MedKoo Cat#: 326645 | Name: Glucagon HCl
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It works to raise the concentration of glucose in the bloodstream. Its effect is opposite that of insulin, which lowers the glucose. The pancreas releases glucagon when the concentration of glucose in the bloodstream falls too low. Glucagon causes the liver to convert stored glycogen into glucose, which is released into the bloodstream. High blood-glucose levels stimulate the release of insulin. Insulin allows glucose to be taken up and used by insulin-dependent tissues.

Chemical Structure

Glucagon HCl
Glucagon HCl
CAS#16941-32-5

Theoretical Analysis

MedKoo Cat#: 326645

Name: Glucagon HCl

CAS#: 16941-32-5

Chemical Formula: C153H229Cl4N43O49S

Exact Mass: 0.0000

Molecular Weight: 3628.63

Elemental Analysis: C, 50.64; H, 6.36; Cl, 3.91; N, 16.60; O, 21.60; S, 0.88

Price and Availability

Size Price Availability Quantity
1g USD 4,950.00 4 Weeks
2g USD 7,950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Glucagon HCl; Glucagon 4HCl; Glucagon hydrochloride; Glucagon tetrahydrochloride;
IUPAC/Chemical Name
H-His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-OH, tetrahydrochloride
InChi Key
DLAGKSYYPKVDCE-GEZPAFOGSA-N
InChi Code
InChI=1S/C153H225N43O49S.4ClH/c1-72(2)52-97(133(226)176-96(47-51-246-11)132(225)184-104(60-115(159)209)143(236)196-123(78(10)203)151(244)245)179-137(230)103(58-83-64-167-89-29-19-18-28-87(83)89)183-131(224)95(43-46-114(158)208)177-148(241)120(74(5)6)194-141(234)101(54-79-24-14-12-15-25-79)182-138(231)105(61-117(211)212)185-130(223)94(42-45-113(157)207)171-124(217)75(7)170-127(220)91(31-22-49-165-152(160)161)172-128(221)92(32-23-50-166-153(162)163)174-146(239)110(69-199)191-140(233)107(63-119(215)216)186-134(227)98(53-73(3)4)178-135(228)99(56-81-33-37-85(204)38-34-81)180-129(222)90(30-20-21-48-154)173-145(238)109(68-198)190-136(229)100(57-82-35-39-86(205)40-36-82)181-139(232)106(62-118(213)214)187-147(240)111(70-200)192-150(243)122(77(9)202)195-142(235)102(55-80-26-16-13-17-27-80)188-149(242)121(76(8)201)193-116(210)66-168-126(219)93(41-44-112(156)206)175-144(237)108(67-197)189-125(218)88(155)59-84-65-164-71-169-84;;;;/h12-19,24-29,33-40,64-65,71-78,88,90-111,120-123,167,197-205H,20-23,30-32,41-63,66-70,154-155H2,1-11H3,(H2,156,206)(H2,157,207)(H2,158,208)(H2,159,209)(H,164,169)(H,168,219)(H,170,220)(H,171,217)(H,172,221)(H,173,238)(H,174,239)(H,175,237)(H,176,226)(H,177,241)(H,178,228)(H,179,230)(H,180,222)(H,181,232)(H,182,231)(H,183,224)(H,184,225)(H,185,223)(H,186,227)(H,187,240)(H,188,242)(H,189,218)(H,190,229)(H,191,233)(H,192,243)(H,193,210)(H,194,234)(H,195,235)(H,196,236)(H,211,212)(H,213,214)(H,215,216)(H,244,245)(H4,160,161,165)(H4,162,163,166);4*1H/t75-,76+,77+,78+,88-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,120-,121-,122-,123-;;;;/m0..../s1
SMILES Code
O=C(N[C@@H](CO)C(N[C@@H](CCC(N)=O)C(NCC(N[C@@H]([C@H](O)C)C(N[C@@H](CC1=CC=CC=C1)C(N[C@@H]([C@H](O)C)C(N[C@@H](CO)C(N[C@@H](CC(O)=O)C(N[C@@H](CC2=CC=C(C=C2)O)C(N[C@@H](CO)C(N[C@@H](CCCCN)C(N[C@@H](CC3=CC=C(C=C3)O)C(N[C@@H](CC(C)C)C(N[C@@H](CC(O)=O)C(N[C@@H](CO)C(N[C@@H](CCCNC(N)=N)C(N[C@@H](CCCNC(N)=N)C(N[C@@H](C)C(N[C@@H](CCC(N)=O)C(N[C@@H](CC(O)=O)C(N[C@@H](CC4=CC=CC=C4)C(N[C@@H](C(C)C)C(N[C@@H](CCC(N)=O)C(N[C@@H](CC5=CNC6=CC=CC=C56)C(N[C@@H](CC(C)C)C(N[C@@H](CCSC)C(N[C@@H](CC(N)=O)C(N[C@@H]([C@H](O)C)C(O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)[C@H](CC7=CNC=N7)N.[H]Cl.[H]Cl.[H]Cl.[H]Cl
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Glucagon (1-29), bovine, human, porcine activates HNF4α and increases HNF4α phosphorylation.
In vitro activity:
Treatment of human primary hepatocytes with glucagon (100 nmol/L) caused a time-dependent decrease in CYP7A1 mRNA levels to 10% of the control in 24 hours (Fig. 1A). As expected, glucagon rapidly increased PEPCK mRNA levels by 10- to 20-fold, but did not significantly change HNF4α mRNA levels. Interestingly, glucagon induced PGC-1α mRNA levels by 10-fold in 3 hours and 3-fold in 24 hours. Reference: Hepatology. 2006 Jan;43(1):117-25. https://pubmed.ncbi.nlm.nih.gov/16323215/
In vivo activity:
Intraperitoneal glucagon (16 µg/kg) but not PBS treatment in mice increased hepatic kisspeptin1 production 30 minutes after injection (Fig. 2D,E). Physiologic endogenous glucagon secretion provoked by overnight fasting (Fig. S2E) resulted in increased hepatic kisspeptin1 production when compared to ad libitum fed mice (Fig. 2F,G). Reference: Cell Metab. 2014 Apr 1;19(4):667-81. https://pubmed.ncbi.nlm.nih.gov/24703698/
Solvent mg/mL mM
Solubility
DMSO 2.5 0.69
Water 6.7 1.84
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 3,628.63 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Song KH, Chiang JY. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology. 2006 Jan;43(1):117-25. doi: 10.1002/hep.20919. PMID: 16323215. 2. Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S, Sugaya T, Fukamizu A. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem. 2003 Apr 11;278(15):13056-60. doi: 10.1074/jbc.C200553200. Epub 2003 Jan 7. PMID: 12519792. 3. Capozzi ME, Wait JB, Koech J, Gordon AN, Coch RW, Svendsen B, Finan B, D'Alessio DA, Campbell JE. Glucagon lowers glycemia when β-cells are active. JCI Insight. 2019 Jul 23;5(16):e129954. doi: 10.1172/jci.insight.129954. PMID: 31335319; PMCID: PMC6777806. 4. Song WJ, Mondal P, Wolfe A, Alonso LC, Stamateris R, Ong BW, Lim OC, Yang KS, Radovick S, Novaira HJ, Farber EA, Farber CR, Turner SD, Hussain MA. Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 2014 Apr 1;19(4):667-81. doi: 10.1016/j.cmet.2014.03.005. PMID: 24703698; PMCID: PMC4058888.
In vitro protocol:
1. Song KH, Chiang JY. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology. 2006 Jan;43(1):117-25. doi: 10.1002/hep.20919. PMID: 16323215. 2. Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S, Sugaya T, Fukamizu A. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem. 2003 Apr 11;278(15):13056-60. doi: 10.1074/jbc.C200553200. Epub 2003 Jan 7. PMID: 12519792.
In vivo protocol:
1. Capozzi ME, Wait JB, Koech J, Gordon AN, Coch RW, Svendsen B, Finan B, D'Alessio DA, Campbell JE. Glucagon lowers glycemia when β-cells are active. JCI Insight. 2019 Jul 23;5(16):e129954. doi: 10.1172/jci.insight.129954. PMID: 31335319; PMCID: PMC6777806. 2. Song WJ, Mondal P, Wolfe A, Alonso LC, Stamateris R, Ong BW, Lim OC, Yang KS, Radovick S, Novaira HJ, Farber EA, Farber CR, Turner SD, Hussain MA. Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 2014 Apr 1;19(4):667-81. doi: 10.1016/j.cmet.2014.03.005. PMID: 24703698; PMCID: PMC4058888.
1: Honda K. Glucagon-related peptides and the regulation of food intake in chickens. Anim Sci J. 2016 May 6. doi: 10.1111/asj.12619. [Epub ahead of print] Review. PubMed PMID: 27150835. 2: Kang YM, Jung CH. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists. Endocrinol Metab (Seoul). 2016 Apr 25. [Epub ahead of print] Review. PubMed PMID: 27118277. 3: Abraham MA, Lam TK. Glucagon action in the brain. Diabetologia. 2016 Apr 26. [Epub ahead of print] Review. PubMed PMID: 27115416. 4: Lee YH, Wang MY, Yu XX, Unger RH. Glucagon is the key factor in the development of diabetes. Diabetologia. 2016 Apr 26. [Epub ahead of print] Review. PubMed PMID: 27115412. 5: Samson WK, Stein LM, Elrick M, Salvatori A, Kolar G, Corbett JA, Yosten GL. Hypoglycemia unawareness prevention: Targeting glucagon production. Physiol Behav. 2016 Apr 11. pii: S0031-9384(16)30147-0. doi: 10.1016/j.physbeh.2016.04.012. [Epub ahead of print] Review. PubMed PMID: 27080082. 6: Fletcher MM, Halls ML, Christopoulos A, Sexton PM, Wootten D. The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochem Soc Trans. 2016 Apr 15;44(2):582-8. doi: 10.1042/BST20150244. Review. PubMed PMID: 27068973. 7: Tudurí E, López M, Diéguez C, Nadal A, Nogueiras R. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets. Trends Endocrinol Metab. 2016 May;27(5):304-18. doi: 10.1016/j.tem.2016.03.004. Epub 2016 Apr 6. Review. PubMed PMID: 27062006. 8: Kalra S, Baruah MP, Sahay RK, Unnikrishnan AG, Uppal S, Adetunji O. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian J Endocrinol Metab. 2016 Mar-Apr;20(2):254-67. doi: 10.4103/2230-8210.176351. Review. PubMed PMID: 27042424; PubMed Central PMCID: PMC4792029. 9: Peng H, Want LL, Aroda VR. Safety and Tolerability of Glucagon-Like Peptide-1 Receptor Agonists Utilizing Data from the Exenatide Clinical Trial Development Program. Curr Diab Rep. 2016 May;16(5):44. doi: 10.1007/s11892-016-0728-4. Review. PubMed PMID: 27037706. 10: Harp JB, Yancopoulos GD, Gromada J. Glucagon Orchestrates Stress-induced Hyperglycemia. Diabetes Obes Metab. 2016 Mar 29. doi: 10.1111/dom.12668. [Epub ahead of print] Review. PubMed PMID: 27027662. 11: Guo X, Yang Q, Dong J, Liao L, Zhang W, Liu F. Tumour Risk with Once-Weekly Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus Patients: A Systematic Review. Clin Drug Investig. 2016 Mar 15. [Epub ahead of print] Review. PubMed PMID: 26979594. 12: Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today. 2016 Feb 3. pii: S1359-6446(16)30001-0. doi: 10.1016/j.drudis.2016.01.013. [Epub ahead of print] Review. PubMed PMID: 26851597. 13: Mayfield K, Siskind D, Winckel K, Russell AW, Kisely S, Smith G, Hollingworth S. Glucagon-like peptide-1 agonists combating clozapine-associated obesity and diabetes. J Psychopharmacol. 2016 Mar;30(3):227-36. doi: 10.1177/0269881115625496. Epub 2016 Jan 22. Review. PubMed PMID: 26801056. 14: Kim KS, Jang HJ. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors. Evid Based Complement Alternat Med. 2015;2015:171742. doi: 10.1155/2015/171742. Epub 2015 Dec 15. Review. PubMed PMID: 26788106; PubMed Central PMCID: PMC4693015. 15: Giorgino F, Bonadonna RC, Gentile S, Vettor R, Pozzilli P. Treatment intensification in patients with inadequate glycemic control on basal insulin: rationale and clinical evidence for the use of lixisenatide and other glucagon-like peptide-1 receptor agonists. Diabetes Metab Res Rev. 2016 Jan 20. doi: 10.1002/dmrr.2775. [Epub ahead of print] Review. PubMed PMID: 26787264. 16: Wewer Albrechtsen NJ, Challis B, Damjanov I, Holst JJ. Do glucagonomas always produce glucagon? Bosn J Basic Med Sci. 2016 Feb 1;16(1):1-7. doi: 10.17305/bjbms.2015.794. Review. PubMed PMID: 26773171; PubMed Central PMCID: PMC4765933. 17: Davidson JA, Holland WL, Roth MG, Wang MY, Lee Y, Yu X, McCorkle SK, Scherer PE, Unger RH. Glucagon therapeutics, dawn of a new era for diabetes care. Diabetes Metab Res Rev. 2016 Jan 4. doi: 10.1002/dmrr.2773. [Epub ahead of print] Review. PubMed PMID: 26729301. 18: Lee CY. Glucagon-Like Peptide-1 Formulation - the Present and Future Development in Diabetes Treatment. Basic Clin Pharmacol Toxicol. 2016 Mar;118(3):173-80. doi: 10.1111/bcpt.12524. Epub 2015 Dec 28. Review. PubMed PMID: 26551045. 19: Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016 Apr;18(4):317-32. doi: 10.1111/dom.12596. Epub 2015 Dec 29. Review. PubMed PMID: 26511102. 20: Smits MM, Tonneijck L, Muskiet MH, Kramer MH, Cahen DL, van Raalte DH. Gastrointestinal actions of glucagon-like peptide-1-based therapies: glycaemic control beyond the pancreas. Diabetes Obes Metab. 2016 Mar;18(3):224-35. doi: 10.1111/dom.12593. Epub 2016 Jan 5. Review. PubMed PMID: 26500045.