MedKoo Cat#: 318494 | Name: Pindolol
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pindolol is a moderately lipophilic beta blocker. Pindolol is a SR-1A/SR-1B antagonist with similar affinity for each subtype. Pindolol acts as a partial agonist at mouse and human β3-AR (β3-adrenoceptors). Pindolol is an inhibitor of β1-AR.

Chemical Structure

Pindolol
Pindolol
CAS#13523-86-9

Theoretical Analysis

MedKoo Cat#: 318494

Name: Pindolol

CAS#: 13523-86-9

Chemical Formula: C14H20N2O2

Exact Mass: 248.1525

Molecular Weight: 248.33

Elemental Analysis: C, 67.71; H, 8.12; N, 11.28; O, 12.89

Price and Availability

Size Price Availability Quantity
100mg USD 200.00
200mg USD 300.00
500mg USD 500.00
1g USD 800.00
2g USD 1,350.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Pindolol; Visken; Prinodolol; Betapindol; Calvisken; Carvisken; LB 46; LB-46; LB46; Pindolol; Prindolol; Visken.
IUPAC/Chemical Name
1-(1H-indol-4-yloxy)-3-(propan-2-ylamino)propan-2-ol
InChi Key
JZQKKSLKJUAGIC-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H20N2O2/c1-10(2)16-8-11(17)9-18-14-5-3-4-13-12(14)6-7-15-13/h3-7,10-11,15-17H,8-9H2,1-2H3
SMILES Code
CC(C)NCC(COC1=CC=CC2=C1C=CN2)O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Pindolol (LB-46) is a nonselective β-blocker with partial beta-adrenergic receptor agonist activity, also functions as a 5-HT1A receptor weak partial antagonist (Ki=33nM).
In vitro activity:
On its own, (-)-pindolol did not modify the cell membrane potential and resistance at concentrations up to 10 microM, but it antagonized the 5-CT effects in a concentration-dependent manner. Similar antagonism of 5-CT effects was observed in the CA3 hippocampal region. (-)-Pindolol also prevented the 5-HT1A receptor-mediated hyperpolarization of CA1 pyramidal cells due to 5-HT (15 microM). In contrast, the 5-HT-induced depolarization mediated by presumed 5-HT4 receptors persisted in the presence of 3 microM (-)-pindolol. Reference: Br J Pharmacol. 1998 Feb;123(3):449-62. https://pubmed.ncbi.nlm.nih.gov/9504386/
In vivo activity:
Treatment of mice with 3 mg/kg/day of S-pindolol in KPC or LLC cancer cachexia models significantly attenuated the loss of body weight, including lean mass and muscle weights, leading to improved grip strength compared with placebo-treated mice. In the KPC model, treated mice lost less than half of the total weight lost by placebo (-0.9 ± 1.0 vs. -2.2 ± 1.4 g for S-pindolol and placebo, respectively, P < 0.05) and around a third of the lean mass lost by tumour-bearing controls (-0.4 ± 1.0 vs. -1.5 ± 1.5 g for S-pindolol and placebo, respectively, P < 0.05), whereas loss of fat mass was similar. In the LLC model, the gastrocnemius weight was higher in sham (108 ± 16 mg) and S-pindolol tumour-bearing (94 ± 15 mg) mice than that in placebo (83 ± 12 mg), whereas the soleus weight was only significantly higher in the S-pindolol-treated group (7.9 ± 1.7 mg) than that in placebo (6.5 ± 0.9). Reference: J Cachexia Sarcopenia Muscle. 2023 May 2. https://pubmed.ncbi.nlm.nih.gov/37130578/
Solvent mg/mL mM comments
Solubility
DMF 15.0 60.40
DMSO 32.5 130.88
DMSO:PBS (pH 7.2) (1:1) 0.5 2.01
Ethanol 5.0 20.14
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 248.33 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Clifford EM, Gartside SE, Umbers V, Cowen PJ, Hajós M, Sharp T. Electrophysiological and neurochemical evidence that pindolol has agonist properties at the 5-HT1A autoreceptor in vivo. Br J Pharmacol. 1998 May;124(1):206-12. doi: 10.1038/sj.bjp.0701796. PMID: 9630361; PMCID: PMC1565357. 2. Corradetti R, Laaris N, Hanoun N, Laporte AM, Le Poul E, Hamon M, Lanfumey L. Antagonist properties of (-)-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain. Br J Pharmacol. 1998 Feb;123(3):449-62. doi: 10.1038/sj.bjp.0701632. PMID: 9504386; PMCID: PMC1565192. 3. Springer J, Jové Q, de Lima Junior EA, Ladrón NÁ, López-Soriano FJ, Busquets S, Argiles JM, Marks DL. Effects of S-pindolol in mouse pancreatic and lung cancer cachexia models. J Cachexia Sarcopenia Muscle. 2023 May 2. doi: 10.1002/jcsm.13249. Epub ahead of print. PMID: 37130578. 4. Yaman B, Bal R. Pindolol potentiates the antidepressant effect of venlafaxine by inhibiting 5-HT1A receptor in DRN neurons of mice. Int J Neurosci. 2022 Jan;132(1):23-30. doi: 10.1080/00207454.2020.1797723. Epub 2020 Jul 23. PMID: 32677492.
In vitro protocol:
1. Clifford EM, Gartside SE, Umbers V, Cowen PJ, Hajós M, Sharp T. Electrophysiological and neurochemical evidence that pindolol has agonist properties at the 5-HT1A autoreceptor in vivo. Br J Pharmacol. 1998 May;124(1):206-12. doi: 10.1038/sj.bjp.0701796. PMID: 9630361; PMCID: PMC1565357. 2. Corradetti R, Laaris N, Hanoun N, Laporte AM, Le Poul E, Hamon M, Lanfumey L. Antagonist properties of (-)-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain. Br J Pharmacol. 1998 Feb;123(3):449-62. doi: 10.1038/sj.bjp.0701632. PMID: 9504386; PMCID: PMC1565192.
In vivo protocol:
1. Springer J, Jové Q, de Lima Junior EA, Ladrón NÁ, López-Soriano FJ, Busquets S, Argiles JM, Marks DL. Effects of S-pindolol in mouse pancreatic and lung cancer cachexia models. J Cachexia Sarcopenia Muscle. 2023 May 2. doi: 10.1002/jcsm.13249. Epub ahead of print. PMID: 37130578. 2. Yaman B, Bal R. Pindolol potentiates the antidepressant effect of venlafaxine by inhibiting 5-HT1A receptor in DRN neurons of mice. Int J Neurosci. 2022 Jan;132(1):23-30. doi: 10.1080/00207454.2020.1797723. Epub 2020 Jul 23. PMID: 32677492.
1: Bickel J, Jungen H, Müller A, Szewczyk A, Ondruschka B, Iwersen-Bergmann S. Toxicologic analysis of 35 drugs in post mortem human blood samples with focus on antihypertensive and antiarrhythmic drugs. J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Jul 15;1242:124196. doi: 10.1016/j.jchromb.2024.124196. Epub 2024 Jun 10. PMID: 38878710. 2: Drugs for hypertension. Med Lett Drugs Ther. 2024 May 27;66(1703):81-88. doi: 10.58347/tml.2024.1703a. PMID: 38771738. 3: Barbosa-Méndez S, Salazar-Juárez A. Evaluation of multitarget drugs on the expression of cocaine-induced locomotor sensitization in male rats: A comparative study. Heliyon. 2024 May 1;10(9):e29979. doi: 10.1016/j.heliyon.2024.e29979. PMID: 38726128; PMCID: PMC11079035. 4: Wang J, Guo Z, Guo Y, Zhang Y, Yu P, Ye Z, Qian Y, Yoshimura C, Wang T, Zhang L. Photochemical fate of β-blocker pindolol in riverine and its downstream coastal waters. Sci Total Environ. 2024 Jun 1;927:172236. doi: 10.1016/j.scitotenv.2024.172236. Epub 2024 Apr 4. PMID: 38582123. 5: Zhou C, You J, Guan X, Guo T, Wu J, Wu H, Wu C, Chen J, Wen J, Tan S, Duanmu X, Qin J, Huang P, Zhang B, Cheng W, Feng J, Xu X, Wang L, Zhang M. Microstructural alterations of the hypothalamus in Parkinson's disease and probable REM sleep behavior disorder. Neurobiol Dis. 2024 May;194:106472. doi: 10.1016/j.nbd.2024.106472. Epub 2024 Mar 12. PMID: 38479482. 6: Sobczak K, Rudnicki K, Poltorak L. Electrochemical screening of selected β-blockers at a polarized liquid-liquid interface. Analyst. 2024 Apr 15;149(8):2363-2373. doi: 10.1039/d3an02051g. PMID: 38454902. 7: Bao H, Wang N, Chen S, Wang Y, Shao H, Ni Y, Li Y, Liu X, Han X. Multimodal Theranostic Nanoparticles for Necrosis Targeting, Fluorescence/SPECT Imaging, and Radiotherapy of Residual Tumors after Hepatocellular Carcinoma Ablation. Mol Pharm. 2024 Apr 1;21(4):1729-1744. doi: 10.1021/acs.molpharmaceut.3c01081. Epub 2024 Mar 7. PMID: 38449426. 8: Zeng Q, Huang Z, Li D, Li L. Preparation of a bis-triazolyl bridged β-cyclodextrin stationary phase and its application for enantioseparation of chiral compounds by HPLC. Chirality. 2024 Feb;36(2):e23644. doi: 10.1002/chir.23644. PMID: 38353340. 9: Hamed O, Jayasinghe V, Giembycz MA. The β-Blocker Carvedilol and Related Aryloxypropanolamines Promote ERK1/2 Phosphorylation in HEK293 Cells with KA Values Distinct From Their Equilibrium Dissociation Constants as β2-Adrenoceptor Antagonists: Evidence for Functional Affinity. J Pharmacol Exp Ther. 2024 Jan 17;388(2):688-700. doi: 10.1124/jpet.123.001920. Erratum in: J Pharmacol Exp Ther. 2024 Mar 15;389(1):128. doi: 10.1124/jpet.123.001920err. PMID: 38129128. 10: Kwak MJ, Wang Q, Onyebeke C, Holder T, Goyal P, Aparasu R, Dhoble A, Holmes HM. How do we define high and low dose intensity of heart failure medications: a scoping review. BMC Cardiovasc Disord. 2023 Sep 27;23(1):478. doi: 10.1186/s12872-023-03514-2. PMID: 37759279; PMCID: PMC10523693. 11: Springer J, Jové Q, de Lima Junior EA, Ladrón NÁ, López-Soriano FJ, Busquets S, Argiles JM, Marks DL. Effects of S-pindolol in mouse pancreatic and lung cancer cachexia models. J Cachexia Sarcopenia Muscle. 2023 Jun;14(3):1244-1248. doi: 10.1002/jcsm.13249. Epub 2023 May 2. PMID: 37130578; PMCID: PMC10235897. 12: Poetsch MS, Palus S, Van Linthout S, von Haehling S, Doehner W, Coats AJS, Anker SD, Springer J. The small molecule ACM-001 improves cardiac function in a rat model of severe cancer cachexia. Eur J Heart Fail. 2023 May;25(5):673-686. doi: 10.1002/ejhf.2840. Epub 2023 Apr 18. PMID: 36999379. 13: Armaković SJ, Jovanoski Kostić A, Bilić A, Savanović MM, Tomić N, Kremenović A, Šćepanović M, Grujić-Brojčin M, Ćirković J, Armaković S. Photocatalytic Activity of the V2O5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process. Molecules. 2023 Jan 9;28(2):655. doi: 10.3390/molecules28020655. PMID: 36677711; PMCID: PMC9863256. 14: Wang YR, Cheng DQ, Ma L, Liu X. [β-arrestin2 recruitment by β-adrenergic receptor agonists and antagonists]. Sheng Li Xue Bao. 2022 Dec 25;74(6):993-1004. Chinese. PMID: 36594387. 15: Jovanoski Kostić A, Kanas N, Rajić V, Sharma A, Bhattacharya SS, Armaković S, Savanović MM, Armaković SJ. Evaluation of Photocatalytic Performance of Nano- Sized Sr0.9La0.1TiO3 and Sr0.25Ca0.25Na0.25Pr0.25TiO3 Ceramic Powders for Water Purification. Nanomaterials (Basel). 2022 Nov 25;12(23):4193. doi: 10.3390/nano12234193. PMID: 36500815; PMCID: PMC9736647. 16: Kgomo H, Dube S, Nindi MM. Evaluating the Performance of Ball-Milled Silk Fibroin Films for Simultaneous Adsorption of Eight Pharmaceuticals from Water. Int J Environ Res Public Health. 2022 Nov 13;19(22):14922. doi: 10.3390/ijerph192214922. PMID: 36429640; PMCID: PMC9690709. 17: Yuan L, Springer J, Palus S, Busquets S, Jové Q, Alves de Lima Junior E, Anker MS, von Haehling S, Álvarez Ladrón N, Millman O, Oosterlee A, Szymczyk A, López-Soriano FJ, Anker SD, Coats AJS, Argiles JM. The atypical β-blocker S-oxprenolol reduces cachexia and improves survival in a rat cancer cachexia model. J Cachexia Sarcopenia Muscle. 2023 Feb;14(1):653-660. doi: 10.1002/jcsm.13116. Epub 2022 Nov 8. PMID: 36346141; PMCID: PMC9891926. 18: Embaby A, van Merendonk L, Steeghs N, Beijnen J, Huitema A. Beta-adrenergic receptor blockade in angiosarcoma: Which beta-blocker to choose? Front Oncol. 2022 Sep 15;12:940582. doi: 10.3389/fonc.2022.940582. PMID: 36185303; PMCID: PMC9520289. 19: Borowiecki P, Zdun B, Popow N, Wiklińska M, Reiter T, Kroutil W. Development of a novel chemoenzymatic route to enantiomerically enriched β-adrenolytic agents. A case study toward propranolol, alprenolol, pindolol, carazolol, moprolol, and metoprolol. RSC Adv. 2022 Aug 10;12(34):22150-22160. doi: 10.1039/d2ra04302e. PMID: 36043081; PMCID: PMC9364081. 20: Puhl AC, Mottin M, Sacramento CQ, Tavella TA, Dias GG, Fintelman-Rodrigues N, Temerozo JR, Dias SSG, Ramos PRPDS, Merten EM, Pearce KH, Costa FTM, Premkumar L, Souza TML, Andrade CH, Ekins S. Computational and Experimental Approaches Identify Beta-Blockers as Potential SARS-CoV-2 Spike Inhibitors. ACS Omega. 2022 Aug 8;7(32):27950-27958. doi: 10.1021/acsomega.2c01707. PMID: 35983371; PMCID: PMC9380819.