MedKoo Cat#: 610222 | Name: Octaethylporphyrin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Octaethylporphyrin, CAS#2683-82-1, is a stable and useful porphyrin compound for research use with potential applications as a photosensitizer. Platinum(II) octaethylporphyrin was used to construct a phosphorescent OLED material.

Chemical Structure

Octaethylporphyrin
Octaethylporphyrin
CAS#2683-82-1

Theoretical Analysis

MedKoo Cat#: 610222

Name: Octaethylporphyrin

CAS#: 2683-82-1

Chemical Formula: C36H46N4

Exact Mass: 534.3723

Molecular Weight: 534.79

Elemental Analysis: C, 80.85; H, 8.67; N, 10.48

Price and Availability

Size Price Availability Quantity
100mg USD 90.00 Ready to ship
200mg USD 150.00 Ready to ship
500mg USD 300.00 Ready to ship
1g USD 500.00 Ready to ship
2g USD 850.00 Ready to ship
5g USD 1,650.00 Ready to ship
10g USD 2,950.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Octaethyl-porphyrin; Octaethylporphyrin; Octaethyl porphyrin
IUPAC/Chemical Name
2,3,7,8,12,13,17,18-octaethylporphyrin
InChi Key
HCIIFBHDBOCSAF-MUZKIALCSA-N
InChi Code
InChI=1S/C36H46N4/c1-9-21-22(10-2)30-18-32-25(13-5)26(14-6)34(39-32)20-36-28(16-8)27(15-7)35(40-36)19-33-24(12-4)23(11-3)31(38-33)17-29(21)37-30/h17-20,37,40H,9-16H2,1-8H3/b29-17-,30-18-,31-17-,32-18-,33-19-,34-20-,35-19-,36-20-
SMILES Code
CCC1=C(CC)C2=N/C1=C\C3=C(CC)C(CC)=C(N3)/C=C4C(CC)=C(CC)C(/C=C5C(CC)=C(CC)/C(N/5)=C/2)=N/4
Appearance
Dark purple to black solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Certificate of Analysis
Safety Data Sheet (SDS)

Preparing Stock Solutions

The following data is based on the product molecular weight 534.79 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Zuo R, Ye Z, Liang H, Huo Y, Ji S. High-efficiency triplet-triplet annihilation upconversion microemulsion with facile preparation and decent air tolerance. Photochem Photobiol Sci. 2024 Jul;23(7):1309-1321. doi: 10.1007/s43630-024-00596-5. Epub 2024 Jun 5. PMID: 38839722. 2: Antoniou G, Athanasopoulos S, Koyioni M, Koutentis PA, Keivanidis PE. Unexpected Performance of a Bifunctional Sensitizer/Activator Component for Photon Energy Management via Upconversion. J Phys Chem Lett. 2024 May 23;15(20):5337-5343. doi: 10.1021/acs.jpclett.4c00720. Epub 2024 May 10. PMID: 38728150; PMCID: PMC11129295. 3: Collins AR, Zhang B, Bennison MJ, Evans RC. Ambient solid-state triplet- triplet annihilation upconversion in ureasil organic-inorganic hybrid hosts. J Mater Chem C Mater. 2024 Apr 15;12(17):6310-6318. doi: 10.1039/d4tc00562g. PMID: 38707254; PMCID: PMC11064974. 4: He S, Liu W, Wu SX. Semiconducting polymer dots based l-lactate sensor by enzymatic cascade reaction system. Anal Chim Acta. 2024 May 15;1303:342523. doi: 10.1016/j.aca.2024.342523. Epub 2024 Mar 23. PMID: 38609265. 5: Kang MJ, Cho YH, Kim S, Ahn DJ. Simultaneous enhancement in phosphorescence and its lifetime of PtOEP-peptide assembly triggered by protein interaction. Int J Biol Macromol. 2024 May;266(Pt 2):131195. doi: 10.1016/j.ijbiomac.2024.131195. Epub 2024 Mar 31. PMID: 38565363. 6: Zhu G, Zhang Q, Yu T, Chen J, Hu R, Yang G, Zeng Y, Li Y. Multiple Force- Triggered Downconverted and Upconverted Emission in Polymers Containing Diels- Alder Adducts. Chem Asian J. 2024 Apr 2;19(7):e202301147. doi: 10.1002/asia.202301147. Epub 2024 Feb 26. PMID: 38334040. 7: Honda J, Sugawa K, Fukumura S, Katoh R, Tahara H, Otsuki J. Optimizing the Distance between Upconversion Thin Films and Silver Nanoprisms for the Design of a High-Performance Plasmonic Triplet-Triplet Annihilation Upconversion System. Langmuir. 2023 Nov 14;39(45):16138-16150. doi: 10.1021/acs.langmuir.3c02352. Epub 2023 Nov 3. PMID: 37922159. 8: Soultati A, Verouti M, Polydorou E, Armadorou KK, Georgiopoulou Z, Palilis LC, Karatasios I, Kilikoglou V, Chroneos A, Coutsolelos AG, Argitis P, Vasilopoulou M. Efficient and Stable Air-Processed Ternary Organic Solar Cells Incorporating Gallium-Porphyrin as an Electron Cascade Material. Nanomaterials (Basel). 2023 Oct 21;13(20):2800. doi: 10.3390/nano13202800. PMID: 37887950; PMCID: PMC10609146. 9: Song X, Liu H, Liu S, Li T, Lv L, Cui B, Wang T, Chen W, Chen Y, Li X. Enhancing Triplet-Triplet Annihilation Upconversion of Pyrene Derivatives for Photoredox Catalysis via Molecular Engineering. Chemistry. 2024 Feb 1;30(7):e202302520. doi: 10.1002/chem.202302520. Epub 2023 Dec 13. PMID: 37877456. 10: Wang X, Yi ZY, Wang YQ, Wang D, Wan LJ. Unraveling the Dynamic Processes of Methanol Electrooxidation at Isolated Rhodium Sites by In Situ Electrochemical Scanning Tunneling Microscopy. J Phys Chem Lett. 2023 Oct 26;14(42):9448-9455. doi: 10.1021/acs.jpclett.3c02514. Epub 2023 Oct 13. PMID: 37830902. 11: Kou M, Qin F, Wang Y, Zhang X, Li L, Hu Z, Zhao H, Zhang Z. Effects of excitation power density on the Stern-Volmer constant measurement. Opt Lett. 2023 Oct 1;48(19):5133-5136. doi: 10.1364/OL.503390. PMID: 37773403. 12: Bhattacharya S, Nevonen DE, Auty AJ, Graf A, Appleby M, Chaudhri N, Chekulaev D, Brückner C, Chauvet AAP, Nemykin VN. Photophysical Exploration of Two Isomers of Octaethyltrioxopyrrocorphin. J Phys Chem A. 2023 Sep 21;127(37):7694-7706. doi: 10.1021/acs.jpca.3c03184. Epub 2023 Sep 10. PMID: 37690121. 13: Gu X, Chen S, Liang Z, Ju X, Li L, Wang X, Ye C. Multi-wavelength excited triplet-triplet upconversion microcrystals based on hot-band excitation for optical information encryption. Phys Chem Chem Phys. 2023 Aug 23;25(33):22103-22110. doi: 10.1039/d3cp02199h. PMID: 37560903. 14: Mendonsa AA, Soeldner CC, Mudd NE, Saccomano SC, Cash KJ. Triplet-Triplet Annihilation Upconversion-Based Oxygen Sensors to Overcome the Limitation of Autofluorescence. ACS Sens. 2023 Aug 25;8(8):3043-3050. doi: 10.1021/acssensors.3c00548. Epub 2023 Aug 4. PMID: 37540503; PMCID: PMC10566256. 15: Miyashita T, Jaimes P, Mardini A, Fumanal M, Tang ML. High-Level Reverse Intersystem Crossing and Molecular Rigidity Improve Spin Statistics for Triplet- Triplet Annihilation Upconversion. J Phys Chem Lett. 2023 Jul 6;14(26):6119-6126. doi: 10.1021/acs.jpclett.3c01504. Epub 2023 Jun 26. PMID: 37364235. 16: Caetano GC, Andrade LA, Martins PR, Ostroski IC. Optimization of the adsorption and desorption processes of nickel octaethylporphyrin in carbon-based adsorbents. An Acad Bras Cienc. 2023 Jun 16;95(2):e20211598. doi: 10.1590/0001-3765202320211598. PMID: 37341271. 17: Duchamp JC, Dorn HC, Wysocki AL, Park K, Olmstead MM, Roy M, Balch AL. Tb2O@C2(13333)-C74: A Non-Isolated Pentagon Endohedral Fullerene Containing a Nearly Linear Tb-O-Tb Unit. Inorg Chem. 2023 Apr 3;62(13):5114-5122. doi: 10.1021/acs.inorgchem.2c04250. Epub 2023 Mar 20. PMID: 36939159. 18: Larsson W, Morimoto M, Irie M, Andréasson J, Albinsson B. Diarylethene Isomerization by Using Triplet-Triplet Annihilation Photon Upconversion. Chemistry. 2023 Mar 1;29(13):e202203651. doi: 10.1002/chem.202203651. Epub 2023 Jan 17. PMID: 36524776. 19: Zhou H, Lin J, Wan S, Lu W. Photochemically deoxygenating gels for triplet- triplet annihilation photon-upconversion performed under air. Phys Chem Chem Phys. 2022 Dec 7;24(47):29151-29158. doi: 10.1039/d2cp04532j. PMID: 36444712. 20: Liu CY, Sadhu AS, Karmakar R, Chu CS, Lin YN, Chang SH, Dalapati GK, Biring S. Strongly Improving the Sensitivity of Phosphorescence-Based Optical Oxygen Sensors by Exploiting Nano-Porous Substrates. Biosensors (Basel). 2022 Sep 20;12(10):774. doi: 10.3390/bios12100774. PMID: 36290912; PMCID: PMC9599114.