MedKoo Cat#: 406475 | Name: PD166866
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

PD166866 is a selective inhibitor of the FGF-1 receptor tyrosine kinase (FGFR1) with IC50 = 55 nM, and no effect on c-Src, PDGFR-b, EGFR or insulin receptor tyrosine kinases or MEK, PKC, and CDK4. PD166866 has clear antiproliferative effects.

Chemical Structure

PD166866
PD166866
CAS#192705-79-6

Theoretical Analysis

MedKoo Cat#: 406475

Name: PD166866

CAS#: 192705-79-6

Chemical Formula: C20H24N6O3

Exact Mass: 396.1910

Molecular Weight: 396.44

Elemental Analysis: C, 60.59; H, 6.10; N, 21.20; O, 12.11

Price and Availability

Size Price Availability Quantity
25mg USD 250.00 2 Weeks
50mg USD 450.00 2 Weeks
100mg USD 750.00 2 Weeks
200mg USD 1,050.00 2 Weeks
500mg USD 1,950.00 2 Weeks
1g USD 2,950.00 2 Weeks
2g USD 4,650.00 2 Weeks
5g USD 7,850.00 2 Weeks
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
PD166866; PD166866; PD 166866.
IUPAC/Chemical Name
1-(2-amino-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)-3-(tert-butyl)urea.
InChi Key
NHJSWORVNIOXIT-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H24N6O3/c1-20(2,3)26-19(27)25-17-15(8-12-10-22-18(21)24-16(12)23-17)11-6-13(28-4)9-14(7-11)29-5/h6-10H,1-5H3,(H4,21,22,23,24,25,26,27)
SMILES Code
O=C(NC(C)(C)C)NC1=NC2=NC(N)=NC=C2C=C1C3=CC(OC)=CC(OC)=C3
Appearance
white solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
        
Product Data
Biological target:
PD166866 is a selective FGFR1 tyrosine kinase inhibitor with an IC50 of 52.4 nM.
In vitro activity:
PD 166866 was a potent inhibitor of basic fibroblast growth factor (bFGF)-mediated receptor autophosphorylation in NIH 3T3 cells expressing endogenous FGFR-1 and in L6 cells overexpressing the human FGFR-1 tyrosine kinase, confirming a tyrosine kinase-mediated mechanism. PD 166866 also inhibited bFGF-induced tyrosine phosphorylation of the 44- and 42-kDa (ERK 1/2) mitogen-activated protein kinase isoforms in L6 cells, presumably via inhibition of bFGF-stimulated FGFR-1 tyrosine kinase activation. Reference: J Pharmacol Exp Ther. 1998 Jul;286(1):569-77. https://pubmed.ncbi.nlm.nih.gov/9655904/
In vivo activity:
TBD
Solvent mg/mL mM
Solubility
DMF 2.0 5.04
DMF:PBS (pH 7.2) (1:6) 0.1 0.35
DMSO 3.5 8.83
Ethanol 0.1 0.25
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 396.44 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Chen Y, Xie X, Li X, Wang P, Jing Q, Yue J, Liu Y, Cheng Z, Li J, Song H, Li G, Liu R, Wang J. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell. Biochem Biophys Res Commun. 2016 May 20;474(1):1-7. doi: 10.1016/j.bbrc.2016.03.017. Epub 2016 Mar 16. PMID: 26993162. 2. Panek RL, Lu GH, Dahring TK, Batley BL, Connolly C, Hamby JM, Brown KJ. In vitro biological characterization and antiangiogenic effects of PD 166866, a selective inhibitor of the FGF-1 receptor tyrosine kinase. J Pharmacol Exp Ther. 1998 Jul;286(1):569-77. PMID: 9655904.
In vitro protocol:
1. Chen Y, Xie X, Li X, Wang P, Jing Q, Yue J, Liu Y, Cheng Z, Li J, Song H, Li G, Liu R, Wang J. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell. Biochem Biophys Res Commun. 2016 May 20;474(1):1-7. doi: 10.1016/j.bbrc.2016.03.017. Epub 2016 Mar 16. PMID: 26993162. 2. Panek RL, Lu GH, Dahring TK, Batley BL, Connolly C, Hamby JM, Brown KJ. In vitro biological characterization and antiangiogenic effects of PD 166866, a selective inhibitor of the FGF-1 receptor tyrosine kinase. J Pharmacol Exp Ther. 1998 Jul;286(1):569-77. PMID: 9655904.
In vivo protocol:
TBD
1: Parthasarathy G. Fibroblast growth factor receptor inhibitors mitigate the neuropathogenicity of Borrelia burgdorferi or its remnants ex vivo. Front Immunol. 2024 Apr 4;15:1327416. doi: 10.3389/fimmu.2024.1327416. PMID: 38638441; PMCID: PMC11024320. 2: Bo W, Ma Y, Feng L, Yu M, Zhang L, Cai M, Song W, Xi Y, Tian Z. FGF21 promotes myocardial angiogenesis and mediates the cardioprotective effects of exercise in myocardial infarction mice. J Appl Physiol (1985). 2023 Sep 1;135(3):696-705. doi: 10.1152/japplphysiol.00307.2023. Epub 2023 Aug 3. PMID: 37535710. 3: Zhang ZJ, Wu QF, Ren AQ, Chen Q, Shi JZ, Li JP, Liu XY, Zhang ZJ, Tang YZ, Zhao Y, Yao NN, Zhang XY, Liu CP, Dong G, Zhao JX, Xu MJ, Yue YQ, Hu J, Sun F, Liu Y, Ao QL, Zhou FL, Wu H, Zhang TC, Zhu HC. ATF4 renders human T-cell acute lymphoblastic leukemia cell resistance to FGFR1 inhibitors through amino acid metabolic reprogramming. Acta Pharmacol Sin. 2023 Nov;44(11):2282-2295. doi: 10.1038/s41401-023-01108-4. Epub 2023 Jun 6. PMID: 37280363; PMCID: PMC10618259. 4: Rajendran R, Rajendran V, Gupta L, Shirvanchi K, Schunin D, Karnati S, Giraldo-Velásquez M, Berghoff M. Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis. Int J Mol Sci. 2022 Oct 12;23(20):12183. doi: 10.3390/ijms232012183. PMID: 36293040; PMCID: PMC9603153. 5: Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. FGF8-FGFR1 signaling regulates human GnRH neuron differentiation in a time- and dose-dependent manner. Dis Model Mech. 2022 Aug 1;15(8):dmm049436. doi: 10.1242/dmm.049436. Epub 2022 Aug 16. PMID: 35833364; PMCID: PMC9403748. 6: Lee TW, Chung CC, Lee TI, Lin YK, Kao YH, Chen YJ. Fibroblast Growth Factor 23 Stimulates Cardiac Fibroblast Activity through Phospholipase C-Mediated Calcium Signaling. Int J Mol Sci. 2021 Dec 23;23(1):166. doi: 10.3390/ijms23010166. PMID: 35008591; PMCID: PMC8745152. 7: Tsui J, Qi S, Perrino S, Leibovitch M, Brodt P. Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells. Biomolecules. 2021 Apr 1;11(4):527. doi: 10.3390/biom11040527. PMID: 33916323; PMCID: PMC8065809. 8: Zhang RJ, Yang L, Sun F, Fang Y, Ye XP, Song HD, Dong M. Three-dimensional microscopy and image fusion reconstruction analysis of the thyroid gland during morphogenesis. FEBS Open Bio. 2021 May;11(5):1417-1427. doi: 10.1002/2211-5463.13150. Epub 2021 Apr 1. PMID: 33735512; PMCID: PMC8091578. 9: Chen T, Wang F, Wei S, Nie Y, Zheng X, Deng Y, Zhu X, Deng Y, Zhong N, Zhou C. FGFR/RACK1 interacts with MDM2, promotes P53 degradation, and inhibits cell senescence in lung squamous cell carcinoma. Cancer Biol Med. 2021 Mar 12;18(3):665–74. doi: 10.20892/j.issn.2095-3941.2020.0389. Epub ahead of print. PMID: 33710818; PMCID: PMC8330524. 10: Yi L, Lan G, Ju Y, Yin X, Zhang P, Xu Y, Weng T. Blockade of Fgfr1 with PD166866 Protects Cartilage from the Catabolic Effects Induced by Interleukin-1β: A Genome-Wide Expression Profiles Analysis. Cartilage. 2021 Dec;13(2_suppl):1122S-1133S. doi: 10.1177/1947603520968208. Epub 2020 Oct 28. PMID: 33111549; PMCID: PMC8804727. 11: Tung KL, Chen KY, Negrete M, Chen T, Safi A, Aljamal AA, Song L, Crawford GE, Ding S, Hsu DS, Shen X. Integrated chromatin and transcriptomic profiling of patient-derived colon cancer organoids identifies personalized drug targets to overcome oxaliplatin resistance. Genes Dis. 2019 Oct 29;8(2):203-214. doi: 10.1016/j.gendis.2019.10.012. PMID: 33997167; PMCID: PMC8099686. 12: Li JY, Liu SG, Xiao GN, Mao MY, Zhang XW, Sun HQ. [Fibroblast growth factor receptor 1 propagates estrogen and fluid shear stress driven proliferation and differentiation response in MC3T3-E1 cells]. Mol Biol (Mosk). 2017 Mar- Apr;51(2):342-355. Russian. doi: 10.7868/S002689841702015X. PMID: 28537241. 13: Chen Y, Xie X, Li X, Wang P, Jing Q, Yue J, Liu Y, Cheng Z, Li J, Song H, Li G, Liu R, Wang J. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell. Biochem Biophys Res Commun. 2016 May 20;474(1):1-7. doi: 10.1016/j.bbrc.2016.03.017. Epub 2016 Mar 16. PMID: 26993162. 14: Olasz J, Doleschall Z, Dunai Z, Pazsitka A, Csuka O. A PI3K/AKT szignálút aktivációjának mechanizmusai és terápiás következményei emlõdaganatokban [PI3K/AKT pathway activation and therapeutic consequences in breast cancer]. Magy Onkol. 2015 Dec;59(4):346-51. Hungarian. Epub 2015 Aug 5. PMID: 26665196. 15: Fu K, Xin Y, Shi Y, Zheng X, Lyu Y, Xu Z, Liu J. [Effects and mechanism of fibroblast growth factor 21 on rat vascular smooth muscle cells calcification]. Zhonghua Xin Xue Guan Bing Za Zhi. 2015 Oct;43(10):879-86. Chinese. PMID: 26652990. 16: Murayama N, Noshita T, Ogino R, Masuda T, Kadoshima T, Oka T, Ueno N, Takemoto N, Toba T, Ueno S, Schulze W, Igawa Y, Morita Y, Inoue T. SUN11602-induced hyperexpression of calbindin D-28k is pivotal for the survival of hippocampal neurons under neurotoxic conditions. Brain Res. 2015 Jan 12;1594:71-81. doi: 10.1016/j.brainres.2014.10.066. Epub 2014 Nov 6. PMID: 25449889. 17: Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR, Wacker MJ. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 2014 Sep 1;307(5):E426-36. doi: 10.1152/ajpendo.00264.2014. Epub 2014 Jul 22. PMID: 25053401; PMCID: PMC4154070. 18: Schweiger N, Hauck M, Steinhoff H, Sampl S, Reifinger M, Walter I, Kreilmeier T, Marian B, Grusch M, Berger W, Holzmann K, Kleiter M. Canine and human sarcomas exhibit predominant FGFR1 expression and impaired viability after inhibition of signaling. Mol Carcinog. 2015 Sep;54(9):841-52. doi: 10.1002/mc.22155. Epub 2014 Apr 9. PMID: 24719266. 19: Lin X, Li G, He X, Ma X, Zhang K, Zhang H, Zeng G, Wang Z. FGF21 inhibits apolipoprotein(a) expression in HepG2 cells via the FGFR1-ERK1/2-Elk-1 pathway. Mol Cell Biochem. 2014 Aug;393(1-2):33-42. doi: 10.1007/s11010-014-2044-0. Epub 2014 Apr 4. PMID: 24700140. 20: Murayama N, Kadoshima T, Takemoto N, Kodama S, Toba T, Ogino R, Noshita T, Oka T, Ueno S, Kuroda M, Shimmyo Y, Morita Y, Inoue T. SUN11602, a novel aniline compound, mimics the neuroprotective mechanisms of basic fibroblast growth factor. ACS Chem Neurosci. 2013 Feb 20;4(2):266-76. doi: 10.1021/cn300183k. Epub 2012 Nov 21. PMID: 23421678; PMCID: PMC3582292.