MedKoo Cat#: 333125 | Name: Protochelin

Description:

WARNING: This product is for research use only, not for human or veterinary use.

​Protochelin, a siderophore produced by Azotobacter vinelandii, exhibits high-affinity iron chelation, with a formation constant (Kf) for the Fe(III)-protochelin complex estimated at approximately 10^30 M^-1, indicating its strong binding capability. This potent iron-binding activity enables A. vinelandii to thrive in iron-limited environments by effectively sequestering iron. Additionally, protochelin demonstrates specificity in metal ion binding, showing a marked preference for Fe(III) over other metal ions such as Al(III) and Ga(III), which is critical for its role in microbial iron acquisition. Furthermore, studies have shown that protochelin can inhibit the growth of competing microorganisms by depriving them of essential iron, highlighting its significance in microbial competition and survival.​

Chemical Structure

Protochelin
Protochelin
CAS#131610-88-3

Theoretical Analysis

MedKoo Cat#: 333125

Name: Protochelin

CAS#: 131610-88-3

Chemical Formula: C31H36N4O10

Exact Mass: 624.2431

Molecular Weight: 624.65

Elemental Analysis: C, 59.61; H, 5.81; N, 8.97; O, 25.61

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Protochelin
IUPAC/Chemical Name
Benzamide, N,N′-[(1S)-1-[[[4-[(2,3-dihydroxybenzoyl)amino]butyl]amino]carbonyl]-1,5-pentanediyl]bis[2,3-dihydroxy-
InChi Key
FRTUVWLJPRMTFC-NRFANRHFSA-N
InChi Code
InChI=1S/C31H36N4O10/c36-22-12-5-8-18(25(22)39)28(42)32-15-2-1-11-21(35-30(44)20-10-7-14-24(38)27(20)41)31(45)34-17-4-3-16-33-29(43)19-9-6-13-23(37)26(19)40/h5-10,12-14,21,36-41H,1-4,11,15-17H2,(H,32,42)(H,33,43)(H,34,45)(H,35,44)/t21-/m0/s1
SMILES Code
O=C([C@@H](NC(C1=CC=CC(O)=C1O)=O)CCCCNC(C2=CC=CC(O)=C2O)=O)NCCCCNC(C3=CC=CC(O)=C3O)=O
Appearance
To be determined
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 -4 C for short term (days to weeks) or -20 C for long term(months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 624.65 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Guo D, Sheng Y, Baars O, Duckworth OW, Chen P, Zhu Z, Zhang X, Chukwuma E, Gooden DM, Verbrugge J, Dong H. Contrasting Effects of Catecholate and Hydroxamate Siderophores on Molybdenite Dissolution. Environ Sci Technol. 2025 Jan 14;59(1):533-544. doi: 10.1021/acs.est.4c11212. Epub 2024 Dec 16. PMID: 39680096. 2: French KS, Chukwuma E, Linshitz I, Namba K, Duckworth OW, Cubeta MA, Baars O. Inactivation of siderophore iron-chelating moieties by the fungal wheat root symbiont Pyrenophora biseptata. Environ Microbiol Rep. 2024 Feb;16(1):e13234. doi: 10.1111/1758-2229.13234. Epub 2024 Jan 19. PMID: 38240404; PMCID: PMC10866069. 3: Srivastava S, Dong H, Baars O, Sheng Y. Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii. Geobiology. 2023 Jul;21(4):507-519. doi: 10.1111/gbi.12552. Epub 2023 Feb 27. PMID: 36852450. 4: Baranska NG, Parkin A, Duhme-Klair AK. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Inorg Chem. 2022 Dec 5;61(48):19172-19182. doi: 10.1021/acs.inorgchem.2c02777. Epub 2022 Oct 17. PMID: 36251475; PMCID: PMC9727729. 5: Mohr JF, Gama S, Roy S, Bellenger JP, Plass W, Wichard T. Hydroxypyridinones in nitrogen-fixing bacterial cultures: a metal buffer for molybdenum and simulation of natural conditions. Metallomics. 2022 Aug 9;14(8):mfac055. doi: 10.1093/mtomcs/mfac055. PMID: 35881466. 6: Doydora SA, Baars O, Harrington JM, Duckworth OW. Salicylate coordination in metal-protochelin complexes. Biometals. 2022 Feb;35(1):87-98. doi: 10.1007/s10534-021-00352-7. Epub 2021 Nov 27. PMID: 34837588. 7: Rai V, Fisher N, Duckworth OW, Baars O. Extraction and Detection of Structurally Diverse Siderophores in Soil. Front Microbiol. 2020 Sep 17;11:581508. doi: 10.3389/fmicb.2020.581508. PMID: 33042099; PMCID: PMC7527475. 8: McRose DL, Baars O, Morel FMM, Kraepiel AML. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation. Environ Microbiol. 2017 Sep;19(9):3595-3605. doi: 10.1111/1462-2920.13857. Epub 2017 Aug 14. PMID: 28703469. 9: Deicke M, Bellenger JP, Wichard T. Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A. 2013 Jul 12;1298:50-60. doi: 10.1016/j.chroma.2013.05.008. Epub 2013 May 10. PMID: 23726243. 10: Harrington JM, Bargar JR, Jarzecki AA, Roberts JG, Sombers LA, Duckworth OW. Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Biometals. 2012 Apr;25(2):393-412. doi: 10.1007/s10534-011-9513-7. Epub 2011 Dec 21. PMID: 22187125. 11: Wichard T, Bellenger JP, Loison A, Kraepiel AM. Catechol siderophores control tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter vinelandii. Environ Sci Technol. 2008 Apr 1;42(7):2408-13. doi: 10.1021/es702651f. PMID: 18504973. 12: Bellenger JP, Wichard T, Kraepiel AM. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl Environ Microbiol. 2008 Mar;74(5):1478-84. doi: 10.1128/AEM.02236-07. Epub 2008 Jan 11. PMID: 18192412; PMCID: PMC2258613. 13: Page WJ, Kwon E, Cornish AS, Tindale AE. The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett. 2003 Nov 21;228(2):211-6. doi: 10.1016/S0378-1097(03)00753-5. PMID: 14638426. 14: Cornish AS, Page WJ. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl Environ Microbiol. 2000 Apr;66(4):1580-6. doi: 10.1128/AEM.66.4.1580-1586.2000. PMID: 10742245; PMCID: PMC92026. 15: Cornish AS, Page WJ. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology (Reading). 1998 Jul;144(7):1747-1754. doi: 10.1099/00221287-144-7-1747. PMID: 33757230.