1: Guo D, Sheng Y, Baars O, Duckworth OW, Chen P, Zhu Z, Zhang X, Chukwuma E, Gooden DM, Verbrugge J, Dong H. Contrasting Effects of Catecholate and Hydroxamate Siderophores on Molybdenite Dissolution. Environ Sci Technol. 2025 Jan 14;59(1):533-544. doi: 10.1021/acs.est.4c11212. Epub 2024 Dec 16. PMID: 39680096.
2: French KS, Chukwuma E, Linshitz I, Namba K, Duckworth OW, Cubeta MA, Baars O. Inactivation of siderophore iron-chelating moieties by the fungal wheat root symbiont Pyrenophora biseptata. Environ Microbiol Rep. 2024 Feb;16(1):e13234. doi: 10.1111/1758-2229.13234. Epub 2024 Jan 19. PMID: 38240404; PMCID: PMC10866069.
3: Srivastava S, Dong H, Baars O, Sheng Y. Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii. Geobiology. 2023 Jul;21(4):507-519. doi: 10.1111/gbi.12552. Epub 2023 Feb 27. PMID: 36852450.
4: Baranska NG, Parkin A, Duhme-Klair AK. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Inorg Chem. 2022 Dec 5;61(48):19172-19182. doi: 10.1021/acs.inorgchem.2c02777. Epub 2022 Oct 17. PMID: 36251475; PMCID: PMC9727729.
5: Mohr JF, Gama S, Roy S, Bellenger JP, Plass W, Wichard T. Hydroxypyridinones in nitrogen-fixing bacterial cultures: a metal buffer for molybdenum and simulation of natural conditions. Metallomics. 2022 Aug 9;14(8):mfac055. doi: 10.1093/mtomcs/mfac055. PMID: 35881466.
6: Doydora SA, Baars O, Harrington JM, Duckworth OW. Salicylate coordination in metal-protochelin complexes. Biometals. 2022 Feb;35(1):87-98. doi: 10.1007/s10534-021-00352-7. Epub 2021 Nov 27. PMID: 34837588.
7: Rai V, Fisher N, Duckworth OW, Baars O. Extraction and Detection of Structurally Diverse Siderophores in Soil. Front Microbiol. 2020 Sep 17;11:581508. doi: 10.3389/fmicb.2020.581508. PMID: 33042099; PMCID: PMC7527475.
8: McRose DL, Baars O, Morel FMM, Kraepiel AML. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation. Environ Microbiol. 2017 Sep;19(9):3595-3605. doi: 10.1111/1462-2920.13857. Epub 2017 Aug 14. PMID: 28703469.
9: Deicke M, Bellenger JP, Wichard T. Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A. 2013 Jul 12;1298:50-60. doi: 10.1016/j.chroma.2013.05.008. Epub 2013 May 10. PMID: 23726243.
10: Harrington JM, Bargar JR, Jarzecki AA, Roberts JG, Sombers LA, Duckworth OW. Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Biometals. 2012 Apr;25(2):393-412. doi: 10.1007/s10534-011-9513-7. Epub 2011 Dec 21. PMID: 22187125.
11: Wichard T, Bellenger JP, Loison A, Kraepiel AM. Catechol siderophores control tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter vinelandii. Environ Sci Technol. 2008 Apr 1;42(7):2408-13. doi: 10.1021/es702651f. PMID: 18504973.
12: Bellenger JP, Wichard T, Kraepiel AM. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl Environ Microbiol. 2008 Mar;74(5):1478-84. doi: 10.1128/AEM.02236-07. Epub 2008 Jan 11. PMID: 18192412; PMCID: PMC2258613.
13: Page WJ, Kwon E, Cornish AS, Tindale AE. The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett. 2003 Nov 21;228(2):211-6. doi: 10.1016/S0378-1097(03)00753-5. PMID: 14638426.
14: Cornish AS, Page WJ. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl Environ Microbiol. 2000 Apr;66(4):1580-6. doi: 10.1128/AEM.66.4.1580-1586.2000. PMID: 10742245; PMCID: PMC92026.
15: Cornish AS, Page WJ. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology (Reading). 1998 Jul;144(7):1747-1754. doi: 10.1099/00221287-144-7-1747. PMID: 33757230.