1: Monnier VM, Sun W, Sell DR, Fan X, Nemet I, Genuth S. Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications. Clin Chem Lab Med. 2014 Jan 1;52(1):21-32. doi: 10.1515/cclm-2013-0174. PMID: 23787467; PMCID: PMC6557662.
2: Sjöberg JS, Bulterijs S. Characteristics, formation, and pathophysiology of glucosepane: a major protein cross-link. Rejuvenation Res. 2009 Apr;12(2):137-48. doi: 10.1089/rej.2009.0846. PMID: 19415980.
3: Nash A, Notou M, Lopez-Clavijo AF, Bozec L, de Leeuw NH, Birch HL. Glucosepane is associated with changes to structural and physical properties of collagen fibrils. Matrix Biol Plus. 2019 Aug 31;4:100013. doi: 10.1016/j.mbplus.2019.100013. PMID: 33543010; PMCID: PMC7852203.
4: Draghici C, Wang T, Spiegel DA. Concise total synthesis of glucosepane. Science. 2015 Oct 16;350(6258):294-8. doi: 10.1126/science.aac9655. PMID: 26472902.
5: Streeter MD, Rowan S, Ray J, McDonald DM, Volkin J, Clark J, Taylor A, Spiegel DA. Generation and Characterization of Anti-Glucosepane Antibodies Enabling Direct Detection of Glucosepane in Retinal Tissue. ACS Chem Biol. 2020 Oct 16;15(10):2655-2661. doi: 10.1021/acschembio.0c00093. Epub 2020 Oct 7. PMID: 32975399; PMCID: PMC10625846.
6: Sveen KA, Dahl-Jørgensen K, Stensaeth KH, Angel K, Seljeflot I, Sell DR, Monnier VM, Hanssen KF. Glucosepane and oxidative markers in skin collagen correlate with intima media thickness and arterial stiffness in long-term type 1 diabetes. J Diabetes Complications. 2015 Apr;29(3):407-12. doi: 10.1016/j.jdiacomp.2014.12.011. Epub 2014 Dec 29. PMID: 25600701.
7: Sell DR, Biemel KM, Reihl O, Lederer MO, Strauch CM, Monnier VM. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem. 2005 Apr 1;280(13):12310-5. doi: 10.1074/jbc.M500733200. Epub 2005 Jan 26. PMID: 15677467.
8: Legrand C, Ahmed U, Anwar A, Rajpoot K, Pasha S, Lambert C, Davidson RK, Clark IM, Thornalley PJ, Henrotin Y, Rabbani N. Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo. Arthritis Res Ther. 2018 Jun 22;20(1):131. doi: 10.1186/s13075-018-1636-6. PMID: 29929535; PMCID: PMC6013878.
9: Collier TA, Nash A, Birch HL, de Leeuw NH. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study. Matrix Biol. 2015 Oct;48:78-88. doi: 10.1016/j.matbio.2015.06.001. Epub 2015 Jun 4. PMID: 26049074; PMCID: PMC4659457.
10: Brings S, Fleming T, Herzig S, Nawroth PP, Kopf S. Urinary cathepsin L is predictive of changes in albuminuria and correlates with glucosepane in patients with type 2 diabetes in a closed-cohort study. J Diabetes Complications. 2020 Sep;34(9):107648. doi: 10.1016/j.jdiacomp.2020.107648. Epub 2020 Jun 2. PMID: 32532588.
11: Nasiri R, Zahedi M, Jamet H, Moosavi-Movahedi AA. Theoretical studies on models of lysine-arginine cross-links derived from α-oxoaldehydes: a new mechanism for glucosepane formation. J Mol Model. 2012 Apr;18(4):1645-59. doi: 10.1007/s00894-011-1161-x. Epub 2011 Aug 3. PMID: 21811778.
12: Nash A, Saßmannshausen J, Bozec L, Birch HL, de Leeuw NH. Computational study of glucosepane-water and hydrogen bond formation: an electron topology and orbital analysis. J Biomol Struct Dyn. 2017 Apr;35(5):1127-1137. doi: 10.1080/07391102.2016.1172026. Epub 2016 May 20. PMID: 27092586.
13: Genuth S, Sun W, Cleary P, Gao X, Sell DR, Lachin J; DCCT/EDIC Research Group; Monnier VM. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes. 2015 Jan;64(1):266-78. doi: 10.2337/db14-0215. Epub 2014 Sep 3. PMID: 25187362; PMCID: PMC4274803.
14: Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018 Apr;93(4):803-813. doi: 10.1016/j.kint.2017.11.034. Epub 2018 Feb 22. PMID: 29477239.
15: Nemet I, Strauch CM, Monnier VM. Favored and disfavored pathways of protein crosslinking by glucose: glucose lysine dimer (GLUCOLD) and crossline versus glucosepane. Amino Acids. 2011 Jan;40(1):167-81. doi: 10.1007/s00726-010-0631-2. Epub 2010 Jul 4. PMID: 20607325; PMCID: PMC2972412.
16: Monnier VM, Sell DR, Strauch C, Sun W, Lachin JM, Cleary PA, Genuth S; DCCT Research Group. The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J Diabetes Complications. 2013 Mar-Apr;27(2):141-9. doi: 10.1016/j.jdiacomp.2012.10.004. Epub 2012 Nov 12. PMID: 23153673; PMCID: PMC3577949.
17: Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev. 2020 Sep;62:101097. doi: 10.1016/j.arr.2020.101097. Epub 2020 Jun 12. PMID: 32540391.
18: deRamon EA, Sabbasani VR, Streeter MD, Liu Y, Newhouse TR, McDonald DM, Spiegel DA. Pentosinane, a Post-Translational Modification of Human Proteins with Underappreciated Stability. J Am Chem Soc. 2022 Dec 7;144(48):21843-21847. doi: 10.1021/jacs.2c09626. Epub 2022 Nov 21. PMID: 36410375; PMCID: PMC11000625.
19: Eekhoff JD, Fang F, Lake SP. Multiscale mechanical effects of native collagen cross-linking in tendon. Connect Tissue Res. 2018 Sep;59(5):410-422. doi: 10.1080/03008207.2018.1449837. Epub 2018 Jun 6. PMID: 29873266.
20: Biemel KM, Friedl DA, Lederer MO. Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J Biol Chem. 2002 Jul 12;277(28):24907-15. doi: 10.1074/jbc.M202681200. Epub 2002 Apr 26. PMID: 11978796.