1: Wakabayashi T, Ishiwa S, Shida K, Motonami N, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiol. 2021 Apr 2;185(3):902-913. doi: 10.1093/plphys/kiaa113. PMID: 33793911; PMCID: PMC8133691.
2: Motonami N, Ueno K, Nakashima H, Nomura S, Mizutani M, Takikawa H, Sugimoto Y. The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry. 2013 Sep;93:41-8. doi: 10.1016/j.phytochem.2013.02.017. Epub 2013 Apr 15. PMID: 23597492.
3: Yoneyama K, Xie X, Yoneyama K, Takeuchi Y. Strigolactones: structures and biological activities. Pest Manag Sci. 2009 May;65(5):467-70. doi: 10.1002/ps.1726. PMID: 19222028.
4: Taghipour F, Motamed N, Amoozegar MA, Shahhoseini M, Mahdian S. Carotenoids as potential inhibitors of TNFα in COVID-19 treatment. PLoS One. 2022 Dec 27;17(12):e0276538. doi: 10.1371/journal.pone.0276538. PMID: 36574379; PMCID: PMC9794061.
5: Ueno K, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y. Bioconversion of 5-deoxystrigol stereoisomers to monohydroxylated strigolactones by plants. J Pestic Sci. 2018 Aug 20;43(3):198-206. doi: 10.1584/jpestics.D18-021. PMID: 30363087; PMCID: PMC6140633.
6: Iseki M, Shida K, Kuwabara K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. J Exp Bot. 2018 Apr 23;69(9):2305-2318. doi: 10.1093/jxb/erx428. PMID: 29294064; PMCID: PMC5913628.
7: Kisugi T, Xie X, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K. Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata. Phytochemistry. 2013 Mar;87:60-4. doi: 10.1016/j.phytochem.2012.11.013. Epub 2013 Jan 3. PMID: 23290861.
8: Yoneyama K, Kisugi T, Xie X, Arakawa R, Ezawa T, Nomura T, Yoneyama K. Shoot- derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta. 2015 Mar;241(3):687-98. doi: 10.1007/s00425-014-2208-x. Epub 2014 Nov 23. PMID: 25417194.
9: Bharti N, Tripathi S, Bhatla SC. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth. Plant Signal Behav. 2015;10(8):e1049792. doi: 10.1080/15592324.2015.1049792. PMID: 26252191; PMCID: PMC4622531.
10: Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry. 2016 Oct;130:90-8. doi: 10.1016/j.phytochem.2016.05.012. Epub 2016 Jun 2. PMID: 27264641.
11: Nomura S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep. 2013 Jun;32(6):829-38. doi: 10.1007/s00299-013-1429-y. Epub 2013 Apr 6. PMID: 23563521.
12: Mohemed N, Charnikhova T, Bakker EJ, van Ast A, Babiker AG, Bouwmeester HJ. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. Pest Manag Sci. 2016 Nov;72(11):2082-2090. doi: 10.1002/ps.4426. Epub 2016 Sep 23. PMID: 27611187.
13: Yoneyama K, Arakawa R, Ishimoto K, Kim HI, Kisugi T, Xie X, Nomura T, Kanampiu F, Yokota T, Ezawa T, Yoneyama K. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol. 2015 May;206(3):983-989. doi: 10.1111/nph.13375. Epub 2015 Mar 6. PMID: 25754513.