1: Wang Y, Durairaj J, Suárez Duran HG, van Velzen R, Flokova K, Liao CY, Chojnacka A, MacFarlane S, Schranz ME, Medema MH, van Dijk ADJ, Dong L, Bouwmeester HJ. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol. New Phytol. 2022 Sep;235(5):1884-1899. doi: 10.1111/nph.18272. Epub 2022 Jun 18. PMID: 35612785; PMCID: PMC9542622.
2: Bromhead LJ, Norman AR, Snowden KC, Janssen BJ, McErlean CSP. Enantioselective total synthesis and biological evaluation of (-)-solanacol. Org Biomol Chem. 2018 Aug 1;16(30):5500-5507. doi: 10.1039/c8ob01287c. PMID: 30027185.
3: Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K. 2'-epi- orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem. 2007 Oct 3;55(20):8067-72. doi: 10.1021/jf0715121. Epub 2007 Sep 6. PMID: 17803261.
4: Wakabayashi T, Moriyama D, Miyamoto A, Okamura H, Shiotani N, Shimizu N, Mizutani M, Takikawa H, Sugimoto Y. Identification of novel canonical strigolactones produced by tomato. Front Plant Sci. 2022 Dec 14;13:1064378. doi: 10.3389/fpls.2022.1064378. Erratum in: Front Plant Sci. 2023 Feb 13;14:1151993. doi: 10.3389/fpls.2023.1151993. PMID: 36589093; PMCID: PMC9794758.
5: Kumagai H, Fujiwara M, Kuse M, Takikawa H. A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds. Biosci Biotechnol Biochem. 2015;79(8):1240-5. doi: 10.1080/09168451.2015.1025036. Epub 2015 Mar 23. PMID: 25798895.
6: Fornier SD, de Saint Germain A, Retailleau P, Pillot JP, Taulera Q, Andna L, Miesch L, Rochange S, Pouvreau JB, Boyer FD. Noncanonical Strigolactone Analogues Highlight Selectivity for Stimulating Germination in Two Phelipanche ramosa Populations. J Nat Prod. 2022 Aug 26;85(8):1976-1992. doi: 10.1021/acs.jnatprod.2c00282. Epub 2022 Jul 1. PMID: 35776904.
7: Chojnacka K, Santoro S, Awartani R, Richards NG, Himo F, Aponick A. Synthetic studies on the solanacol ABC ring system by cation-initiated cascade cyclization: implications for strigolactone biosynthesis. Org Biomol Chem. 2011 Aug 7;9(15):5350-3. doi: 10.1039/c1ob05751k. Epub 2011 Jun 24. PMID: 21706088.
8: Chen VX, Boyer FD, Rameau C, Retailleau P, Vors JP, Beau JM. Stereochemistry, total synthesis, and biological evaluation of the new plant hormone solanacol. Chemistry. 2010 Dec 17;16(47):13941-5. doi: 10.1002/chem.201002817. PMID: 21108265.
9: Zhang Y, Cheng X, Wang Y, Díez-Simón C, Flokova K, Bimbo A, Bouwmeester HJ, Ruyter-Spira C. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol. 2018 Jul;219(1):297-309. doi: 10.1111/nph.15131. Epub 2018 Apr 14. PMID: 29655242.
10: Zwanenburg B, Pospísil T. Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant. 2013 Jan;6(1):38-62. doi: 10.1093/mp/sss141. Epub 2012 Nov 30. PMID: 23204499.
11: Kohlen W, Charnikhova T, Bours R, López-Ráez JA, Bouwmeester H. Tomato strigolactones: a more detailed look. Plant Signal Behav. 2013 Jan;8(1):e22785. doi: 10.4161/psb.22785. Epub 2012 Dec 6. PMID: 23221743; PMCID: PMC3745585.
12: Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant. 2013 Jan;6(1):153-63. doi: 10.1093/mp/sss139. Epub 2012 Nov 30. PMID: 23204500; PMCID: PMC3548624.
13: Rial C, Varela RM, Molinillo JMG, López-Ráez JA, Macías FA. A new UHPLC- MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochem Anal. 2019 Jan;30(1):110-116. doi: 10.1002/pca.2796. Epub 2018 Oct 2. PMID: 30280444.
14: Rial C, Tomé S, Varela RM, Molinillo JMG, Macías FA. Phytochemical Study of Safflower Roots (Carthamus tinctorius) on the Induction of Parasitic Plant Germination and Weed Control. J Chem Ecol. 2020 Sep;46(9):871-880. doi: 10.1007/s10886-020-01200-7. Epub 2020 Jul 21. PMID: 32691372.
15: Vinoth P, Vivekanand T, Suryavanshi PA, Menéndez JC, Sasai H, Sridharan V. Palladium(II)-catalyzed intramolecular carboxypalladation-olefin insertion cascade: direct access to indeno[1,2-b]furan-2-ones. Org Biomol Chem. 2015 May 14;13(18):5175-81. doi: 10.1039/c5ob00458f. PMID: 25849414.
16: López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008;178(4):863-874. doi: 10.1111/j.1469-8137.2008.02406.x. Epub 2008 Mar 10. PMID: 18346111.
17: Hasegawa S, Tsutsumi T, Fukushima S, Okabe Y, Saito J, Katayama M, Shindo M, Yamada Y, Shimomura K, Yoneyama K, Akiyama K, Aoki K, Ariizumi T, Ezura H, Yamaguchi S, Umehara M. Low Infection of Phelipanche aegyptiaca in Micro- Tom Mutants Deficient in CAROTENOIDCLEAVAGE DIOXYGENASE 8. Int J Mol Sci. 2018 Sep 6;19(9):2645. doi: 10.3390/ijms19092645. PMID: 30200620; PMCID: PMC6163878.
18: Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J Exp Bot. 2010 Jun;61(6):1739-49. doi: 10.1093/jxb/erq041. Epub 2010 Mar 1. PMID: 20194924; PMCID: PMC2852664.
19: Dor E, Yoneyama K, Wininger S, Kapulnik Y, Yoneyama K, Koltai H, Xie X, Hershenhorn J. Strigolactone deficiency confers resistance in tomato line SL- ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology. 2011 Feb;101(2):213-22. doi: 10.1094/PHYTO-07-10-0184. PMID: 20942651.