MedKoo Cat#: 127537 | Name: Lipofermata
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Lipofermata is an inhibitor of fatty acid transport.

Chemical Structure

Lipofermata
CAS#297180-15-5

Theoretical Analysis

MedKoo Cat#: 127537

Name: Lipofermata

CAS#: 297180-15-5

Chemical Formula: C15H10BrN3OS

Exact Mass: 358.9728

Molecular Weight: 360.23

Elemental Analysis: C, 50.01; H, 2.80; Br, 22.18; N, 11.67; O, 4.44; S, 8.90

Price and Availability

Size Price Availability Quantity
50mg USD 450.00 2 Weeks
100mg USD 750.00 2 Weeks
200mg USD 1,250.00 2 Weeks
500mg USD 2,650.00 2 Weeks
1g USD 3,950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Lipofermata; CBMicro_034701; thiadiazole derivative, 9;
IUPAC/Chemical Name
5-bromo-5'-phenyl-3'H-spiro[indoline-3,2'-[1,3,4]thiadiazol]-2-one
InChi Key
RRBYYBWDUNSVAW-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10BrN3OS/c16-10-6-7-12-11(8-10)15(14(20)17-12)19-18-13(21-15)9-4-2-1-3-5-9/h1-8,19H,(H,17,20)
SMILES Code
O=C(C12SC(C3=CC=CC=C3)=NN1)NC4=C2C=C(Br)C=C4
Appearance
To be determined
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 -4 C for short term (days to weeks) or -20 C for long term(months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Biological target:
In vitro activity:
The effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. Reference: Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. Phytomedicine. 2024 Nov;134:155991. doi: 10.1016/j.phymed.2024.155991. Epub 2024 Aug 27. PMID: 39217653.
In vivo activity:
The effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. Reference: Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. Phytomedicine. 2024 Nov;134:155991. doi: 10.1016/j.phymed.2024.155991. Epub 2024 Aug 27. PMID: 39217653.

Preparing Stock Solutions

The following data is based on the product molecular weight 360.23 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Zhang M, Di Martino JS, Bowman RL, Campbell NR, Baksh SC, Simon-Vermot T, Kim IS, Haldeman P, Mondal C, Yong-Gonzales V, Abu-Akeel M, Merghoub T, Jones DR, Zhu XG, Arora A, Ariyan CE, Birsoy K, Wolchok JD, Panageas KS, Hollmann T, Bravo-Cordero JJ, White RM. Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. Cancer Discov. 2018 Aug;8(8):1006-1025. doi: 10.1158/2159-8290.CD-17-1371. Epub 2018 Jun 14. PMID: 29903879; PMCID: PMC6192670. 2: Kong X, Tao S, Ji Z, Li J, Li H, Jin J, Zhao Y, Liu J, Zhao F, Chen J, Feng Z, Chen B, Shan Z. FATP2 regulates osteoclastogenesis by increasing lipid metabolism and ROS production. J Bone Miner Res. 2024 Jul 23;39(6):737-752. doi: 10.1093/jbmr/zjae034. PMID: 38477781. 3: Adeshakin AO, Adeshakin FO, Liu W, Li H, Yan D, Wan X. Lipidomics data showing the effect of lipofermata on myeloid-derived suppressor cells in the spleens of tumor-bearing mice. Data Brief. 2021 Feb 13;35:106882. doi: 10.1016/j.dib.2021.106882. PMID: 33665270; PMCID: PMC7905345. 4: Jiang M, Chen R, Hu B, Xiong S, Li S, Fu B, Liu X. FATP2 activates PI3K/Akt/mTOR pathway by inhibiting ATF3 and promotes the occurrence and development of bladder cancer. Cell Signal. 2024 May;117:111087. doi: 10.1016/j.cellsig.2024.111087. Epub 2024 Feb 3. PMID: 38316266. 5: Ahowesso C, Black PN, Saini N, Montefusco D, Chekal J, Malosh C, Lindsley CW, Stauffer SR, DiRusso CC. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death. Biochem Pharmacol. 2015 Nov 1;98(1):167-81. doi: 10.1016/j.bcp.2015.09.004. Epub 2015 Sep 21. PMID: 26394026; PMCID: PMC4610366. 6: Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. Phytomedicine. 2024 Nov;134:155991. doi: 10.1016/j.phymed.2024.155991. Epub 2024 Aug 27. PMID: 39217653. 7: Sato K, Hirayama Y, Mizutani A, Yao J, Higashino J, Kamitaka Y, Muranaka Y, Yamazaki K, Nishii R, Kobayashi M, Kawai K. Potential Application of the Myocardial Scintigraphy Agent [123I]BMIPP in Colon Cancer Cell Imaging. Int J Mol Sci. 2024 Jul 15;25(14):7747. doi: 10.3390/ijms25147747. PMID: 39062992; PMCID: PMC11277422. 8: Santos-Beneit F, Raškevičius V, Skeberdis VA, Bordel S. A metabolic modeling approach reveals promising therapeutic targets and antiviral drugs to combat COVID-19. Sci Rep. 2021 Jun 7;11(1):11982. doi: 10.1038/s41598-021-91526-3. PMID: 34099831; PMCID: PMC8184994. 9: Kim JL, Mestre B, Malitsky S, Itkin M, Kupervaser M, Futerman AH. Fatty acid transport protein 2 interacts with ceramide synthase 2 to promote ceramide synthesis. J Biol Chem. 2022 Apr;298(4):101735. doi: 10.1016/j.jbc.2022.101735. Epub 2022 Feb 16. PMID: 35181339; PMCID: PMC8931434. 10: Lu Y, Yang X, Kuang Q, Wu Y, Tan X, Lan J, Qiang Z, Feng T. HBx induced upregulation of FATP2 promotes the development of hepatic lipid accumulation. Exp Cell Res. 2023 Sep 1;430(1):113721. doi: 10.1016/j.yexcr.2023.113721. Epub 2023 Jul 10. PMID: 37437769. 11: Adeshakin AO, Liu W, Adeshakin FO, Afolabi LO, Zhang M, Zhang G, Wang L, Li Z, Lin L, Cao Q, Yan D, Wan X. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol. 2021 Apr;362:104286. doi: 10.1016/j.cellimm.2021.104286. Epub 2021 Jan 19. PMID: 33524739. 12: Chen Y, Yan Q, Lv M, Song K, Dai Y, Huang Y, Zhang L, Zhang C, Gao H. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 2020 Nov 20;11(11):994. doi: 10.1038/s41419-020-03199-x. PMID: 33219209; PMCID: PMC7679409. 13: Zhang B, Zhang Y, Chang K, Hou N, Fan P, Ji C, Liu L, Wang Z, Li R, Wang Y, Zhang J, Ling R. Risk assessment model based on nucleotide metabolism-related genes highlights SLC27A2 as a potential therapeutic target in breast cancer. J Cancer Res Clin Oncol. 2024 May 16;150(5):258. doi: 10.1007/s00432-024-05754-x. PMID: 38753091; PMCID: PMC11098904.