1: Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T.
N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-
incorporated mRNA by providing enhanced protein expression and reduced
immunogenicity in mammalian cell lines and mice. J Control Release. 2015 Nov
10;217:337-44. doi: 10.1016/j.jconrel.2015.08.051. Epub 2015 Sep 3. PMID:
26342664.
2: Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Öztürk
Ö, Kranz LM, Berger H, Petschenka J, Diken M, Kreiter S, Yogev N, Waisman A,
Karikó K, Türeci Ö, Sahin U. A noninflammatory mRNA vaccine for treatment of
experimental autoimmune encephalomyelitis. Science. 2021 Jan
8;371(6525):145-153. doi: 10.1126/science.aay3638. PMID: 33414215.
3: Wang C, Zhang Y, Dong Y. Lipid Nanoparticle-mRNA Formulations for Therapeutic
Applications. Acc Chem Res. 2021 Dec 7;54(23):4283-4293. doi:
10.1021/acs.accounts.1c00550. Epub 2021 Nov 18. PMID: 34793124.
4: Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope
MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in
lipid nanoparticles to mice by various routes. J Control Release. 2015 Nov
10;217:345-51. doi: 10.1016/j.jconrel.2015.08.007. Epub 2015 Aug 8. PMID:
26264835; PMCID: PMC4624045.
5: Mokuda S, Watanabe H, Kohno H, Ishitoku M, Araki K, Hirata S, Sugiyama E.
N1-methylpseudouridine-incorporated mRNA enhances exogenous protein
expression and suppresses immunogenicity in primary human fibroblast-like
synoviocytes. Cytotechnology. 2022 Aug;74(4):503-514. doi:
10.1007/s10616-022-00540-4. Epub 2022 Jun 30. PMID: 35791402; PMCID: PMC9245880.
6: Baiersdörfer M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, Karikó
K. A Facile Method for the Removal of dsRNA Contaminant from In Vitro-
Transcribed mRNA. Mol Ther Nucleic Acids. 2019 Apr 15;15:26-35. doi:
10.1016/j.omtn.2019.02.018. Epub 2019 Feb 27. PMID: 30933724; PMCID: PMC6444222.
7: Parr CJC, Wada S, Kotake K, Kameda S, Matsuura S, Sakashita S, Park S,
Sugiyama H, Kuang Y, Saito H. N 1-Methylpseudouridine substitution enhances the
performance of synthetic mRNA switches in cells. Nucleic Acids Res. 2020 Apr
6;48(6):e35. doi: 10.1093/nar/gkaa070. PMID: 32090264; PMCID: PMC7102939.
8: Hoehn SJ, Krul SE, Skory BJ, Crespo-Hernández CE. Increased Photostability of
the Integral mRNA Vaccine Component N1 -Methylpseudouridine Compared
to Uridine. Chemistry. 2022 Jan 27;28(6):e202103667. doi:
10.1002/chem.202103667. Epub 2021 Dec 21. PMID: 34875113.
9: Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, Seelig G.
Human 5' UTR design and variant effect prediction from a massively parallel
translation assay. Nat Biotechnol. 2019 Jul;37(7):803-809. doi:
10.1038/s41587-019-0164-5. Epub 2019 Jul 1. PMID: 31267113; PMCID: PMC7100133.
10: Argoudelis AD, Mizsak SA. 1-methylpseudouridine, a metabolite of
Streptomyces platensis. J Antibiot (Tokyo). 1976 Aug;29(8):818-23. doi:
10.7164/antibiotics.29.818. PMID: 993120.
11: Pardi N, Weissman D. Nucleoside Modified mRNA Vaccines for Infectious
Diseases. Methods Mol Biol. 2017;1499:109-121. doi: 10.1007/978-1-4939-6481-9_6.
PMID: 27987145.
12: Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N.
N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and
independent mechanisms by increasing ribosome density. Nucleic Acids Res. 2017
Jun 2;45(10):6023-6036. doi: 10.1093/nar/gkx135. PMID: 28334758; PMCID:
PMC5449617.
13: Pang H, Ihara M, Kuchino Y, Nishimura S, Gupta R, Woese CR, McCloskey JA.
Structure of a modified nucleoside in archaebacterial tRNA which replaces
ribosylthymine. 1-Methylpseudouridine. J Biol Chem. 1982 Apr 10;257(7):3589-92.
PMID: 7061499.
14: Chatterjee K, Blaby IK, Thiaville PC, Majumder M, Grosjean H, Yuan YA, Gupta
R, de Crécy-Lagard V. The archaeal COG1901/DUF358 SPOUT-methyltransferase
members, together with pseudouridine synthase Pus10, catalyze the formation of
1-methylpseudouridine at position 54 of tRNA. RNA. 2012 Mar;18(3):421-33. doi:
10.1261/rna.030841.111. Epub 2012 Jan 24. PMID: 22274953; PMCID: PMC3285931.
15: Dutta N, Deb I, Sarzynska J, Lahiri A. Data-informed reparameterization of
modified RNA and the effect of explicit water models: application to
pseudouridine and derivatives. J Comput Aided Mol Des. 2022 Mar;36(3):205-224.
doi: 10.1007/s10822-022-00447-4. Epub 2022 Mar 26. PMID: 35338419; PMCID:
PMC8956458.
16: Shanmugasundaram M, Senthilvelan A, Kore AR. Gram-Scale Chemical Synthesis
of Base-Modified Ribonucleoside-5'-O-Triphosphates. Curr Protoc Nucleic Acid
Chem. 2016 Dec 1;67:13.15.1-13.15.10. doi: 10.1002/cpnc.20. PMID: 27911496.
17: Wolf EJ, Grünberg S, Dai N, Chen TH, Roy B, Yigit E, Corrêa IR. Human RNase
4 improves mRNA sequence characterization by LC-MS/MS. Nucleic Acids Res. 2022
Oct 14;50(18):e106. doi: 10.1093/nar/gkac632. PMID: 35871301; PMCID: PMC9561288.
18: Brand RC, Klootwijk J, Planta RJ, Maden BE. Biosynthesis of a hypermodified
nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal
ribonucleic acid. Biochem J. 1978 Jan 1;169(1):71-7. doi: 10.1042/bj1690071.
PMID: 629754; PMCID: PMC1184195.
19: Zhang Y, Xi X, Yu H, Yang L, Lin J, Yang W, Liu J, Fan X, Xu Y. Chemically
modified in-vitro-transcribed mRNA encoding thrombopoietin stimulates
thrombopoiesis in mice. Mol Ther Nucleic Acids. 2022 Aug 13;29:657-671. doi:
10.1016/j.omtn.2022.08.017. PMID: 36090760; PMCID: PMC9440273.
20: Piccirilli JA, Moroney SE, Benner SA. A C-nucleotide base pair:
methylpseudouridine-directed incorporation of formycin triphosphate into RNA
catalyzed by T7 RNA polymerase. Biochemistry. 1991 Oct 22;30(42):10350-6. doi:
10.1021/bi00106a037. PMID: 1718418.