MedKoo Cat#: 112211 | Name: Mandi
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Mandi is a chemical inducer of proximity (CIP) in vivo and in vitro.

Chemical Structure

Mandi
Mandi
CAS#374726-62-2

Theoretical Analysis

MedKoo Cat#: 112211

Name: Mandi

CAS#: 374726-62-2

Chemical Formula: C23H22ClNO4

Exact Mass: 411.1237

Molecular Weight: 411.88

Elemental Analysis: C, 67.07; H, 5.38; Cl, 8.61; N, 3.40; O, 15.54

Price and Availability

Size Price Availability Quantity
50mg USD 450.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Mandi; Mandipropamid
IUPAC/Chemical Name
2-(4-chlorophenyl)-N-(3-methoxy-4-(prop-2-yn-1-yloxy)phenethyl)-2-(prop-2-yn-1-yloxy)acetamide
InChi Key
KWLVWJPJKJMCSH-UHFFFAOYSA-N
InChi Code
InChI=1S/C23H22ClNO4/c1-4-14-28-20-11-6-17(16-21(20)27-3)12-13-25-23(26)22(29-15-5-2)18-7-9-19(24)10-8-18/h1-2,6-11,16,22H,12-15H2,3H3,(H,25,26)
SMILES Code
C#CCOC1=C(OC)C=C(CCNC(C(OCC#C)C2=CC=C(Cl)C=C2)=O)C=C1
Appearance
To be determined
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Solvent mg/mL mM
Solubility
DMSO 41.2 100.00
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 411.88 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Ziegler MJ, Yserentant K, Dunsing V, Middel V, Gralak AJ, Pakari K, Bargstedt J, Kern C, Petrich A, Chiantia S, Strähle U, Herten DP, Wombacher R. Mandipropamid as a chemical inducer of proximity for in vivo applications. Nat Chem Biol. 2022 Jan;18(1):64-69. doi: 10.1038/s41589-021-00922-3. Epub 2021 Dec 21. PMID: 34934192; PMCID: PMC8709788. 2: Hou Z, Hou X, Wei L, Cao Z, Lu Z, Liu H, Lu Z. Degradation and residues of mandipropamid in soil and ginseng and dietary risk assessment in Chinese culture. Environ Sci Pollut Res Int. 2023 Feb;30(10):26367-26374. doi: 10.1007/s11356-022-24024-2. Epub 2022 Nov 11. PMID: 36357760. 3: Li J, Han J, Lan T, Mu S, Hu D, Zhang K. Enantioselective hydrolysis and photolysis of mandipropamid in different aquatic environments - evaluation of influencing factors. Environ Sci Pollut Res Int. 2022 Aug;29(40):60244-60258. doi: 10.1007/s11356-022-20202-4. Epub 2022 Apr 13. PMID: 35419689. 4: Xu G, Jia X, Zhang H, Zhang J, Nie J. Enantioselective fate of mandipropamid in grape and during processing of grape wine. Environ Sci Pollut Res Int. 2020 Nov;27(32):40148-40155. doi: 10.1007/s11356-020-10061-2. Epub 2020 Jul 13. PMID: 32661960. 5: EFSA (European Food Safety Authority); Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Castellan I, Del Aguila M, Ferreira L, Santonja GG, Greco L, Jarrah S, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Robinson T, Ruocco S, Santos M, Scarlato AP, Theobald A, Verani A. Setting of import tolerances for mandipropamid in papayas. EFSA J. 2023 Jan 11;21(1):e07741. doi: 10.2903/j.efsa.2023.7741. PMID: 36643907; PMCID: PMC9832323. 6: Mu S, Dou L, Ye Y, Chi D, Zhang K. Effects of Household Processing on Residues of the Chiral Fungicide Mandipropamid in Four Common Vegetables. Int J Environ Res Public Health. 2022 Nov 23;19(23):15543. doi: 10.3390/ijerph192315543. PMID: 36497615; PMCID: PMC9735481. 7: Fang K, Han L, Liu Y, Fang J, Wang X, Liu T. Enantioselective bioaccumulation and detoxification mechanisms of earthworms (Eisenia fetida) exposed to mandipropamid. Sci Total Environ. 2021 Nov 20;796:149051. doi: 10.1016/j.scitotenv.2021.149051. Epub 2021 Jul 15. PMID: 34280637. 8: Li J, Lan T, Yang G, Mu S, Zhang K. Enantioselective evaluation of the chiral fungicide mandipropamid: Dissipation, distribution and potential dietary intake risk in tomato, cucumber, Chinese cabbage and cowpea. Ecotoxicol Environ Saf. 2022 Mar 1;232:113260. doi: 10.1016/j.ecoenv.2022.113260. Epub 2022 Feb 1. PMID: 35121257. 9: Belisle RJ, Hao W, Riley N, Förster H, Adaskaveg JE. Root Absorption and Limited Mobility of Mandipropamid as Compared to Oxathiapiprolin and Mefenoxam After Soil Treatment of Citrus Plants for Managing Phytophthora Root Rot. Plant Dis. 2023 Apr;107(4):1107-1114. doi: 10.1094/PDIS-07-22-1699-RE. Epub 2023 Apr 19. PMID: 36541882. 10: Zhang J, Li Y, Tan Y, Zhang Y, Li R, Zhou L, Wang M. The enantioselective environmental fate of mandipropamid in water-sediment microcosms: Distribution, degradation, degradation pathways and toxicity assessment. Sci Total Environ. 2023 Sep 15;891:164650. doi: 10.1016/j.scitotenv.2023.164650. Epub 2023 Jun 5. PMID: 37285990. 11: Mu S, Dou L, Ye Y, Zhang H, Shi J, Zhang K. Insights on the isolation, identification, and degradation characteristics of three bacterial strains against mandipropamid and their application potential for polluted soil remediation. Pestic Biochem Physiol. 2023 Apr;191:105376. doi: 10.1016/j.pestbp.2023.105376. Epub 2023 Feb 27. PMID: 36963922. 12: Han L, Liu Y, Nie J, You X, Li Y, Wang X, Wang J. Indigenous functional microbial degradation of the chiral fungicide mandipropamid in repeatedly treated soils: Preferential changes in the R-enantiomer. J Hazard Mater. 2022 Aug 5;435:128961. doi: 10.1016/j.jhazmat.2022.128961. Epub 2022 Apr 20. PMID: 35472545. 13: Zhang J, Wu Q, Zhong Y, Wang Z, He Z, Zhang Y, Wang M. Enantioselective Bioactivity, Toxicity, and Degradation in Vegetables and Soil of Chiral Fungicide Mandipropamid. J Agric Food Chem. 2021 Nov 17;69(45):13416-13424. doi: 10.1021/acs.jafc.1c04370. Epub 2021 Nov 5. PMID: 34738463. 14: European Food Safety Authority (EFSA); Bellisai G, Bernasconi G, Carrasco Cabrera L, Castellan I, Del Aguila M, Ferreira L, Santonja GG, Greco L, Jarrah S, Leuschner R, Perez JM, Miron I, Nave S, Pedersen R, Reich H, Ruocco S, Santos M, Scarlato AP, Theobald A, Tiramani M, Verani A. Modification of the existing maximum residue level for mandipropamid in radish leaves. EFSA J. 2023 Dec 21;21(12):e8421. doi: 10.2903/j.efsa.2023.8421. PMID: 38130323; PMCID: PMC10733801. 15: Blum M, Boehler M, Randall E, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova AO, Whisson SC, Fonne-Pfister R. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Mol Plant Pathol. 2010 Mar;11(2):227-43. doi: 10.1111/j.1364-3703.2009.00604.x. PMID: 20447272; PMCID: PMC6640402. 16: Ye Y, Zhang H, You Y, Liao F, Shi J, Zhang K. Accumulation, translocation, metabolism and subcellular distribution of mandipropamid in cherry radish: A comparative study under hydroponic and soil-cultivated conditions. Food Chem. 2024 Aug 1;448:139169. doi: 10.1016/j.foodchem.2024.139169. Epub 2024 Mar 29. PMID: 38569412. 17: Siegenthaler TB, Hansen ZR. Sensitivity of Phytophthora capsici from Tennessee to Mefenoxam, Fluopicolide, Oxathiapiprolin, Dimethomorph, Mandipropamid, and Cyazofamid. Plant Dis. 2021 Oct;105(10):3000-3007. doi: 10.1094/PDIS-08-20-1805-RE. Epub 2021 Nov 5. PMID: 33736467. 18: Qu T, Shao Y, Csinos AS, Ji P. Sensitivity of Phytophthora nicotianae From Tobacco to Fluopicolide, Mandipropamid, and Oxathiapiprolin. Plant Dis. 2016 Oct;100(10):2119-2125. doi: 10.1094/PDIS-04-16-0429-RE. Epub 2016 Jul 18. PMID: 30683015. 19: European Food Safety Authority (EFSA); Abdourahime H, Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A, Villamar-Bouza L. Modification of the existing maximum residue levels for mandipropamid in various crops. EFSA J. 2019 Feb 13;17(2):e05599. doi: 10.2903/j.efsa.2019.5599. PMID: 32626225; PMCID: PMC7009267. 20: Toffolatti SL, Russo G, Campia P, Bianco PA, Borsa P, Coatti M, Torriani SF, Sierotzki H. A time-course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of Plasmopara viticola treated with anti-resistance strategies. Pest Manag Sci. 2018 Dec;74(12):2822-2834. doi: 10.1002/ps.5072. Epub 2018 Jul 22. PMID: 29749019.