MedKoo Cat#: 112007 | Name: 3-Hydroxyphenylacetic Acid
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

3-Hydroxyphenylacetic acid is a phenolic acid with diverse biological activities. It is formed via microbial metabolism of polyphenolic compounds, including the flavonoid quercetin, by gut microbiota. 3-Hydroxyphenylacetic acid binds to the γ-hydroxybutyrate receptor (GHBR; IC50 = 12 µM) and GABAA receptors in rat cerebrocortical membranes. It increases the activity of aldehyde dehydrogenase (ALDH) in Hepa-1c1c7 and HepG2 cells and protects Hepa-1c1c7 cells from acetaldehyde-induced cytotoxicity when used at a concentration of 10 µM. 3-Hydroxyphenylacetic acid is active against P. aeruginosa (MIC = 2.1 mg/ml). It induces ataxia and decreases locomotor activity in mice (ED50s = 1,677.3 and 1,441.3 mg/kg, respectively), as well as decreases systolic and diastolic blood pressure in spontaneously hypertensive rats when administered at doses ranging from 0.1 to 10 mg/kg.

Chemical Structure

3-Hydroxyphenylacetic Acid
3-Hydroxyphenylacetic Acid
CAS#621-37-4

Theoretical Analysis

MedKoo Cat#: 112007

Name: 3-Hydroxyphenylacetic Acid

CAS#: 621-37-4

Chemical Formula: C8H8O3

Exact Mass: 152.0473

Molecular Weight: 152.15

Elemental Analysis: C, 63.15; H, 5.30; O, 31.55

Price and Availability

Size Price Availability Quantity
5g USD 250.00 2 Weeks
25g USD 450.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
3-Hydroxyphenylacetic Acid; 3Hydroxyphenylacetic Acid; 3 Hydroxyphenylacetic Acid; 3-HPAA; m-HPAA; meta-HPAA; m-Hydroxyphenylacetic Acid; meta-Hydroxyphenylacetic Acid; 3HPAA; 3 HPAA; mHPAA; m HPAA; mHydroxyphenylacetic Acid; m Hydroxyphenylacetic Acid; meta Hydroxyphenylacetic Acid; metaHydroxyphenylacetic Acid
IUPAC/Chemical Name
2-(3-hydroxyphenyl)acetic acid
InChi Key
FVMDYYGIDFPZAX-UHFFFAOYSA-N
InChi Code
InChI=1S/C8H8O3/c9-7-3-1-2-6(4-7)5-8(10)11/h1-4,9H,5H2,(H,10,11)
SMILES Code
O=C(O)CC1=CC(O)=CC=C1
Appearance
Solid powder
Purity
>97% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Solvent mg/mL mM
Solubility
DMSO 1.0 6.57
Ethanol 1.0 6.57
PBS (pH:7.2) 5.0 32.86
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 152.15 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Zhou Q, Deng J, Pan X, Meng D, Zhu Y, Bai Y, Shi C, Duan Y, Wang T, Li X, Sluijter JP, Xiao J. Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome. 2022 May 31;10(1):82. doi: 10.1186/s40168-022-01271-6. PMID: 35637497; PMCID: PMC9153113. 2: Tsagkari E, Deda O, Krokos A, Gika H, Papadopoulos MA, Chatzigianni A. Investigation of salivary biomarkers as indicators of skeletal and dental maturity in children. Orthod Craniofac Res. 2022 Mar 17. doi: 10.1111/ocr.12572. Epub ahead of print. PMID: 35298872. 3: Liu Y, Myojin T, Li K, Kurita A, Seto M, Motoyama A, Liu X, Satoh A, Munemasa S, Murata Y, Nakamura T, Nakamura Y. A Major Intestinal Catabolite of Quercetin Glycosides, 3-Hydroxyphenylacetic Acid, Protects the Hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the Enhancement of the Total Aldehyde Dehydrogenase Activity. Int J Mol Sci. 2022 Feb 3;23(3):1762. doi: 10.3390/ijms23031762. PMID: 35163684; PMCID: PMC8836260. 4: Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. Sci Total Environ. 2022 May 15;821:153279. doi: 10.1016/j.scitotenv.2022.153279. Epub 2022 Jan 21. PMID: 35074372. 5: Dias P, Pourová J, Vopršalová M, Nejmanová I, Mladěnka P. 3-Hydroxyphenylacetic Acid: A Blood Pressure-Reducing Flavonoid Metabolite. Nutrients. 2022 Jan 13;14(2):328. doi: 10.3390/nu14020328. PMID: 35057508; PMCID: PMC8781193. 6: Sirven MA, Venancio VP, Shankar S, Klemashevich C, Castellón-Chicas MJ, Fang C, Mertens-Talcott SU, Talcott ST. Ulcerative colitis results in differential metabolism of cranberry polyphenols by the colon microbiome in vitro. Food Funct. 2021 Dec 13;12(24):12751-12764. doi: 10.1039/d1fo03047g. PMID: 34847216. 7: Nannini G, Meoni G, Tenori L, Ringressi MN, Taddei A, Niccolai E, Baldi S, Russo E, Luchinat C, Amedei A. Fecal metabolomic profiles: A comparative study of patients with colorectal cancer vs adenomatous polyps. World J Gastroenterol. 2021 Oct 14;27(38):6430-6441. doi: 10.3748/wjg.v27.i38.6430. PMID: 34720532; PMCID: PMC8517777. 8: Li N, Mao W, Gao Y, Wang D, Song Z, Chen Z. Liquid chromatography-mass spectrometry based metabolic characterization of pleural effusion in patients with acquired EGFR-TKI resistance. J Pharm Biomed Anal. 2021 Aug 5;202:114147. doi: 10.1016/j.jpba.2021.114147. Epub 2021 May 18. PMID: 34029974. 9: Cárdenas-Castro AP, Zamora-Gasga VM, Alvarez-Parrilla E, Ruíz-Valdiviezo VM, Venema K, Sáyago-Ayerdi SG. In vitro gastrointestinal digestion and colonic fermentation of tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.): Phenolic compounds released and bioconverted by gut microbiota. Food Chem. 2021 Oct 30;360:130051. doi: 10.1016/j.foodchem.2021.130051. Epub 2021 May 11. PMID: 34020365. 10: Chen J, Lv YN, Li XB, Xiong JJ, Liang HT, Xie L, Wan CY, Chen YQ, Wang HS, Liu P, Zheng HQ. Urinary Metabolite Signatures for Predicting Elderly Stroke Survivors with Depression. Neuropsychiatr Dis Treat. 2021 Mar 25;17:925-933. doi: 10.2147/NDT.S299835. PMID: 33790561; PMCID: PMC8007561. 11: Pahalagedara ASNW, Flint S, Palmer J, Subbaraj A, Brightwell G, Gupta TB. Antimicrobial Activity of Soil Clostridium Enriched Conditioned Media Against Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front Microbiol. 2020 Dec 4;11:608998. doi: 10.3389/fmicb.2020.608998. PMID: 33343553; PMCID: PMC7746556. 12: Schjødt MS, Gürdeniz G, Chawes B. The Metabolomics of Childhood Atopic Diseases: A Comprehensive Pathway-Specific Review. Metabolites. 2020 Dec 16;10(12):511. doi: 10.3390/metabo10120511. PMID: 33339279; PMCID: PMC7767195. 13: Ozdemir OO, Soyer F. Pseudomonas aeruginosa Presents Multiple Vital Changes in Its Proteome in the Presence of 3-Hydroxyphenylacetic Acid, a Promising Antimicrobial Agent. ACS Omega. 2020 Aug 5;5(32):19938-19951. doi: 10.1021/acsomega.0c00703. PMID: 32832748; PMCID: PMC7439270. 14: Zhang Z, Yang M, Yin A, Chen M, Tan N, Wang M, Zhang Y, Ye H, Zhang X, Zhou W. Serum metabolomics reveals the effect of electroacupuncture on urinary leakage in women with stress urinary incontinence. J Pharm Biomed Anal. 2020 Oct 25;190:113513. doi: 10.1016/j.jpba.2020.113513. Epub 2020 Aug 1. PMID: 32781319. 15: Havlik J, Marinello V, Gardyne A, Hou M, Mullen W, Morrison DJ, Preston T, Combet E, Edwards CA. Dietary Fibres Differentially Impact on the Production of Phenolic Acids from Rutin in an In Vitro Fermentation Model of the Human Gut Microbiota. Nutrients. 2020 May 28;12(6):1577. doi: 10.3390/nu12061577. PMID: 32481553; PMCID: PMC7352394. 16: Ono K, Tsuji M, Yamasaki TR, Pasinetti GM. Anti-aggregation Effects of Phenolic Compounds on α-synuclein. Molecules. 2020 May 24;25(10):2444. doi: 10.3390/molecules25102444. PMID: 32456274; PMCID: PMC7288075. 17: Zabela V, Sampath C, Oufir M, Butterweck V, Hamburger M. Single dose pharmacokinetics of intravenous 3,4-dihydroxyphenylacetic acid and 3-hydroxyphenylacetic acid in rats. Fitoterapia. 2020 Apr;142:104526. doi: 10.1016/j.fitote.2020.104526. Epub 2020 Feb 22. PMID: 32097685. 18: Bustamante L, Pastene E, Duran-Sandoval D, Vergara C, Von Baer D, Mardones C. Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food Chem. 2018 Dec 1;268:347-354. doi: 10.1016/j.foodchem.2018.06.048. Epub 2018 Jun 11. PMID: 30064768. 19: Li D, Wang P, Wang P, Hu X, Chen F. Gut microbiota promotes production of aromatic metabolites through degradation of barley leaf fiber. J Nutr Biochem. 2018 Aug;58:49-58. doi: 10.1016/j.jnutbio.2018.05.001. Epub 2018 May 9. PMID: 29879614. 20: Chacar S, Tarighi M, Fares N, Faivre JF, Louka N, Maroun RG. Identification of Phenolic Compounds-Rich Grape Pomace Extracts Urine Metabolites and Correlation with Gut Microbiota Modulation. Antioxidants (Basel). 2018 Jun 4;7(6):75. doi: 10.3390/antiox7060075. PMID: 29866989; PMCID: PMC6025592.