MedKoo Cat#: 406137 | Name: LY364947
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

LY364947 is a selective inhibitor of TGF- β type-I receptor with potential anticancer activity. LY364947 inhibits TGF- β -dependent luciferase production in mink lung cells (p3TP lux) and growth in mouse fibroblasts (NIH 3T3).

Chemical Structure

LY364947
LY364947
CAS#396129-53-6

Theoretical Analysis

MedKoo Cat#: 406137

Name: LY364947

CAS#: 396129-53-6

Chemical Formula: C17H12N4

Exact Mass: 272.1062

Molecular Weight: 272.31

Elemental Analysis: C, 74.98; H, 4.44; N, 20.58

Price and Availability

Size Price Availability Quantity
50mg USD 750.00 2 Weeks
100mg USD 1,250.00 2 Weeks
200mg USD 2,250.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
LY364947; LY-364947l; LY 364947
IUPAC/Chemical Name
4-(3-(pyridin-2-yl)-1H-pyrazol-4-yl)quinoline
InChi Key
IBCXZJCWDGCXQT-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H12N4/c1-2-6-15-13(5-1)12(8-10-19-15)14-11-20-21-17(14)16-7-3-4-9-18-16/h1-11H,(H,20,21)
SMILES Code
C1(C2=CNN=C2C3=NC=CC=C3)=CC=NC4=CC=CC=C14
Appearance
Light yellow solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
        
Product Data
Biological target:
LY-364947 (HTS466284) is a potent ATP-competitive inhibitor of TGFβR-I with IC50 of 59 nM.
In vitro activity:
HCC cells were transfected with pBabe-HOXB9 and shHOXB9 plasmids, and MTT assay, Transwell assays, and xenograft mouse models were employed to determine the effects of HOXB9 on HCC cell proliferation, migration, and invasion in vitro and in vivo. In addition, the treatment with TGF-β1 inhibitor, LY364947, significantly reserved HOXB9 overexpression-induced cell proliferation, migration, and invasion abilities. Reference: Biomed Res Int. 2022 Sep 16;2022:1080315. https://pubmed.ncbi.nlm.nih.gov/36158877/
In vivo activity:
The aim of this study was to investigate the effect of TGF-β inhibitor LY364947 on the diaphragm during chronic sepsis. The inhibitor was able to abolish diaphragm wasting only in the LY D1 group. Similarly, LY364947 had a beneficial effect on the diaphragm contraction only for the LY D1 group. MAD3 was over-expressed and phosphorylated within rats in the Septic group; however, this effect was reversed by LY364947. Reference: Shock. 2020 Jun;53(6):772-778. https://pubmed.ncbi.nlm.nih.gov/32413000/
Solvent mg/mL mM
Solubility
DMF 2.0 7.34
DMF:PBS (pH 7.2) (1:1) 0.5 1.84
DMSO 18.3 67.23
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 272.31 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Bai L, Ge P, Zhang Y, Song Y, Xing R, Zhou D. Homeobox B9 Promotes the Progression of Hepatocellular Carcinoma via TGF-β1/Smad and ERK1/2 Signaling Pathways. Biomed Res Int. 2022 Sep 16;2022:1080315. doi: 10.1155/2022/1080315. PMID: 36158877; PMCID: PMC9507699. 2. Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet. 2022 Feb 24;13:783016. doi: 10.3389/fgene.2022.783016. PMID: 35281827; PMCID: PMC8907593. 3. Jude B, Tissier F, Dubourg A, Droguet M, Castel T, Léon K, Giroux-Metges MA, Pennec JP. TGF-β Pathway Inhibition Protects the Diaphragm From Sepsis-Induced Wasting and Weakness in Rat. Shock. 2020 Jun;53(6):772-778. doi: 10.1097/SHK.0000000000001393. PMID: 32413000. 4. Ding J, Tang Q, Luo B, Zhang L, Lin L, Han L, Hao M, Li M, Yu L, Li M. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway. Eur J Pharmacol. 2019 Sep 15;859:172549. doi: 10.1016/j.ejphar.2019.172549. Epub 2019 Jul 17. PMID: 31325434.
In vitro protocol:
1. Bai L, Ge P, Zhang Y, Song Y, Xing R, Zhou D. Homeobox B9 Promotes the Progression of Hepatocellular Carcinoma via TGF-β1/Smad and ERK1/2 Signaling Pathways. Biomed Res Int. 2022 Sep 16;2022:1080315. doi: 10.1155/2022/1080315. PMID: 36158877; PMCID: PMC9507699. 2. Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet. 2022 Feb 24;13:783016. doi: 10.3389/fgene.2022.783016. PMID: 35281827; PMCID: PMC8907593.
In vivo protocol:
1. Jude B, Tissier F, Dubourg A, Droguet M, Castel T, Léon K, Giroux-Metges MA, Pennec JP. TGF-β Pathway Inhibition Protects the Diaphragm From Sepsis-Induced Wasting and Weakness in Rat. Shock. 2020 Jun;53(6):772-778. doi: 10.1097/SHK.0000000000001393. PMID: 32413000. 2. Ding J, Tang Q, Luo B, Zhang L, Lin L, Han L, Hao M, Li M, Yu L, Li M. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway. Eur J Pharmacol. 2019 Sep 15;859:172549. doi: 10.1016/j.ejphar.2019.172549. Epub 2019 Jul 17. PMID: 31325434.
1: Hayata T, Ezura Y, Asashima M, Nishinakamura R, Noda M. Dullard/Ctdnep1 Regulates Endochondral Ossification via Suppression of TGF-ß Signaling. J Bone Miner Res. 2014 Aug 22. doi: 10.1002/jbmr.2343. [Epub ahead of print] PubMed PMID: 25155999. 2: Nassar K, Grisanti S, Tura A, Lüke J, Lüke M, Soliman M, Grisanti S. A TGF-β receptor 1 inhibitor for prevention of proliferative vitreoretinopathy. Exp Eye Res. 2014 Jun;123:72-86. doi: 10.1016/j.exer.2014.04.006. Epub 2014 Apr 15. PubMed PMID: 24742493. 3: Jaskova K, Pavlovicova M, Cagalinec M, Lacinova L, Jurkovicova D. TGFβ1 downregulates neurite outgrowth, expression of Ca2+ transporters, and mitochondrial dynamics of in vitro cerebellar granule cells. Neuroreport. 2014 Mar 26;25(5):340-6. doi: 10.1097/WNR.0000000000000106. PubMed PMID: 24535220. 4: Bansal SS, Celia C, Ferrati S, Zabre E, Ferrari M, Palapattu G, Grattoni A. Validated RP-HPLC method for the simultaneous analysis of gemcitabine and LY-364947 in liposomal formulations. Curr Drug Targets. 2013 Aug;14(9):1061-9. PubMed PMID: 23721184. 5: van Beuge MM, Prakash J, Lacombe M, Post E, Reker-Smit C, Beljaars L, Poelstra K. Enhanced effectivity of an ALK5-inhibitor after cell-specific delivery to hepatic stellate cells in mice with liver injury. PLoS One. 2013;8(2):e56442. doi: 10.1371/journal.pone.0056442. Epub 2013 Feb 18. PubMed PMID: 23441194; PubMed Central PMCID: PMC3575413. 6: Ueda K, Nakahara T, Mori A, Sakamoto K, Ishii K. Protective effects of TGF-β inhibitors in a rat model of NMDA-induced retinal degeneration. Eur J Pharmacol. 2013 Jan 15;699(1-3):188-93. doi: 10.1016/j.ejphar.2012.11.054. Epub 2012 Dec 7. PubMed PMID: 23220705. 7: Xu H, Yang F, Sun Y, Yuan Y, Cheng H, Wei Z, Li S, Cheng T, Brann D, Wang R. A new antifibrotic target of Ac-SDKP: inhibition of myofibroblast differentiation in rat lung with silicosis. PLoS One. 2012;7(7):e40301. doi: 10.1371/journal.pone.0040301. Epub 2012 Jul 3. PubMed PMID: 22802960; PubMed Central PMCID: PMC3389005. 8: Balzarini P, Benetti A, Invernici G, Cristini S, Zicari S, Caruso A, Gatta LB, Berenzi A, Imberti L, Zanotti C, Portolani N, Giulini SM, Ferrari M, Ciusani E, Navone SE, Canazza A, Parati EA, Alessandri G. Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest. 2012 Sep;92(9):1297-309. doi: 10.1038/labinvest.2012.94. Epub 2012 Jun 25. PubMed PMID: 22732936. 9: Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 2012 Aug 15;72(16):4119-29. doi: 10.1158/0008-5472.CAN-12-0546. Epub 2012 Jun 12. PubMed PMID: 22693253; PubMed Central PMCID: PMC3538149. 10: Singh V, Agrawal V, Santhiago MR, Wilson SE. Stromal fibroblast-bone marrow-derived cell interactions: implications for myofibroblast development in the cornea. Exp Eye Res. 2012 May;98:1-8. doi: 10.1016/j.exer.2012.03.006. Epub 2012 Mar 23. PubMed PMID: 22465408; PubMed Central PMCID: PMC3340470. 11: Suzuki Y, Ito Y, Mizuno M, Kinashi H, Sawai A, Noda Y, Mizuno T, Shimizu H, Fujita Y, Matsui K, Maruyama S, Imai E, Matsuo S, Takei Y. Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int. 2012 May;81(9):865-79. doi: 10.1038/ki.2011.464. Epub 2012 Jan 18. PubMed PMID: 22258325. 12: Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One. 2011;6(10):e26514. doi: 10.1371/journal.pone.0026514. Epub 2011 Oct 20. PubMed PMID: 22028892; PubMed Central PMCID: PMC3197668. 13: Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011 Oct 23;6(12):815-23. doi: 10.1038/nnano.2011.166. PubMed PMID: 22020122. 14: Vogt J, Traynor R, Sapkota GP. The specificities of small molecule inhibitors of the TGFß and BMP pathways. Cell Signal. 2011 Nov;23(11):1831-42. doi: 10.1016/j.cellsig.2011.06.019. Epub 2011 Jun 29. PubMed PMID: 21740966. 15: Gauger KJ, Chenausky KL, Murray ME, Schneider SS. SFRP1 reduction results in an increased sensitivity to TGF-β signaling. BMC Cancer. 2011 Feb 8;11:59. doi: 10.1186/1471-2407-11-59. PubMed PMID: 21303533; PubMed Central PMCID: PMC3041779. 16: Yoshioka N, Kimura-Kuroda J, Saito T, Kawamura K, Hisanaga S, Kawano H. Small molecule inhibitor of type I transforming growth factor-β receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. J Neurosci Res. 2011 Mar;89(3):381-93. doi: 10.1002/jnr.22552. Epub 2010 Dec 22. PubMed PMID: 21259325. 17: Kimura-Kuroda J, Teng X, Komuta Y, Yoshioka N, Sango K, Kawamura K, Raisman G, Kawano H. An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Mol Cell Neurosci. 2010 Feb;43(2):177-87. doi: 10.1016/j.mcn.2009.10.008. Epub 2009 Nov 6. PubMed PMID: 19897043. 18: Kano MR, Komuta Y, Iwata C, Oka M, Shirai YT, Morishita Y, Ouchi Y, Kataoka K, Miyazono K. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-beta receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci. 2009 Jan;100(1):173-80. doi: 10.1111/j.1349-7006.2008.01003.x. Epub 2008 Nov 24. PubMed PMID: 19037999. 19: Fretz MM, Dolman ME, Lacombe M, Prakash J, Nguyen TQ, Goldschmeding R, Pato J, Storm G, Hennink WE, Kok RJ. Intervention in growth factor activated signaling pathways by renally targeted kinase inhibitors. J Control Release. 2008 Dec 18;132(3):200-7. doi: 10.1016/j.jconrel.2008.08.013. Epub 2008 Aug 27. PubMed PMID: 18793687. 20: Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3460-5. Epub 2007 Feb 16. PubMed PMID: 17307870; PubMed Central PMCID: PMC1800736.