MedKoo Cat#: 510258 | Name: GNE-0877
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

GNE-0877, also known as DNL-201, is a highly potent and selective LRRK2 inhibitor. Leucine-rich repeat kinase 2 (LRRK2) has drawn significant interest in the neuroscience research community because it is one of the most compelling targets for a potential disease-modifying Parkinson's disease therapy.

Chemical Structure

GNE-0877
GNE-0877
CAS#1374828-69-9

Theoretical Analysis

MedKoo Cat#: 510258

Name: GNE-0877

CAS#: 1374828-69-9

Chemical Formula: C14H16F3N7

Exact Mass: 339.1419

Molecular Weight: 339.33

Elemental Analysis: C, 49.56; H, 4.75; F, 16.80; N, 28.90

Price and Availability

Size Price Availability Quantity
5mg USD 120.00 Ready to ship
10mg USD 190.00 Ready to ship
25mg USD 350.00 Ready to ship
50mg USD 550.00 Ready to ship
100mg USD 950.00 Ready to ship
200mg USD 1,650.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
GNE0877; GNE 0877; GNE-0877; DNL-201; DNL201; DNL 201;
IUPAC/Chemical Name
2-methyl-2-(3-methyl-4-((4-(methylamino)-5-(trifluoromethyl)pyrimidin-2-yl)amino)-1H-pyrazol-1-yl)propanenitrile .
InChi Key
ZPPUMAMZIMPJGP-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H16F3N7/c1-8-10(6-24(23-8)13(2,3)7-18)21-12-20-5-9(14(15,16)17)11(19-4)22-12/h5-6H,1-4H3,(H2,19,20,21,22)
SMILES Code
CC(N1N=C(C)C(NC2=NC=C(C(F)(F)F)C(NC)=N2)=C1)(C)C#N
Appearance
white to off-white solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
         
Biological target:
GNE0877 is a highly selective, orally active and brain-penetrant LRRK2 inhibitor with an IC50 of 3 nM and a Ki of 0.7 nM.
In vitro activity:
Disciplined application of established optimal CNS design parameters culminated in the rapid identification of GNE-0877 (11) and GNE-9605 (20) as highly potent and selective LRRK2 inhibitors. Reference: J Med Chem. 2014 Feb 13;57(3):921-36. https://pubmed.ncbi.nlm.nih.gov/24354345/
In vivo activity:
TBD
Solvent mg/mL mM
Solubility
DMF 30.0 88.41
DMSO 116.0 341.85
DMSO:PBS (pH 7.2) (1:6) 0.1 0.41
Ethanol 1.0 2.95
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 339.33 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Estrada AA, Chan BK, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Chen H, Dominguez SL, Dotson J, Drummond J, Flagella M, Fuji R, Gill A, Halladay J, Harris SF, Heffron TP, Kleinheinz T, Lee DW, Le Pichon CE, Liu X, Lyssikatos JP, Medhurst AD, Moffat JG, Nash K, Scearce-Levie K, Sheng Z, Shore DG, Wong S, Zhang S, Zhang X, Zhu H, Sweeney ZK. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2014 Feb 13;57(3):921-36. doi: 10.1021/jm401654j. Epub 2014 Jan 15. PMID: 24354345.
In vitro protocol:
1. Estrada AA, Chan BK, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Chen H, Dominguez SL, Dotson J, Drummond J, Flagella M, Fuji R, Gill A, Halladay J, Harris SF, Heffron TP, Kleinheinz T, Lee DW, Le Pichon CE, Liu X, Lyssikatos JP, Medhurst AD, Moffat JG, Nash K, Scearce-Levie K, Sheng Z, Shore DG, Wong S, Zhang S, Zhang X, Zhu H, Sweeney ZK. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2014 Feb 13;57(3):921-36. doi: 10.1021/jm401654j. Epub 2014 Jan 15. PMID: 24354345.
In vivo protocol:
TBD
1: Estrada AA, Chan BK, Baker-Glenn C, Beresford A, Burdick DJ, Chambers M, Chen H, Dominguez SL, Dotson J, Drummond J, Flagella M, Fuji R, Gill A, Halladay J, Harris SF, Heffron TP, Kleinheinz T, Lee DW, Pichon CE, Liu X, Lyssikatos JP, Medhurst AD, Moffat JG, Nash K, Scearce-Levie K, Sheng Z, Shore DG, Wong S, Zhang S, Zhang X, Zhu H, Sweeney ZK. Discovery of Highly Potent, Selective, and Brain-Penetrant Aminopyrazole Leucine-Rich Repeat Kinase 2 (LRRK2) Small Molecule Inhibitors. J Med Chem. 2014 Jan 15. [Epub ahead of print] PubMed PMID: 24354345.