MedKoo Cat#: 406571 | Name: Splitomicin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Splitomicin is a cell-permeable lactone derived from naphthol and known to be a potent selective inhibitor of Sir2 (silent information regulator 2) and HDAC. Splitomicin inhibits the NAD+-dependent deacetylase activity of Sir2 in vitro. It increases the levels of cyclic AMP by inhibiting the activity of cyclic AMP phosphodiesterase, interferes with mobilization of intracellular Ca+2 and ATP release.

Chemical Structure

Splitomicin
Splitomicin
CAS#5690-03-9

Theoretical Analysis

MedKoo Cat#: 406571

Name: Splitomicin

CAS#: 5690-03-9

Chemical Formula: C13H10O2

Exact Mass: 198.0681

Molecular Weight: 198.22

Elemental Analysis: C, 78.77; H, 5.09; O, 16.14

Price and Availability

Size Price Availability Quantity
1mg USD 200.00 2 Weeks
5mg USD 415.00 2 Weeks
10mg USD 575.00 2 Weeks
25mg USD 900.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Splitomicin
IUPAC/Chemical Name
1H-benzo[f]chromen-3(2H)-one
InChi Key
ISFPDBUKMJDAJH-UHFFFAOYSA-N
InChi Code
InChI=1S/C13H10O2/c14-13-8-6-11-10-4-2-1-3-9(10)5-7-12(11)15-13/h1-5,7H,6,8H2
SMILES Code
O=C1CCC2=C3C=CC=CC3=CC=C2O1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
        
Product Data
Biological target:
Splitomicin is a Sir2p histone deacetylase activity inhibitor, displaying higher activity in vivo (minimal inhibitory concentration = 0.49 µM) than in vitro (IC50 = 60 µM). Splitomicin has diverse effects on mammalian cells.
In vitro activity:
Targeting SIRT1 activity, with compounds such as splitomicin, during embryonic stem (ES) cell differentiation could be a promising strategy to improve the efficiency of hematopoietic lineage differentiation. The inhibitors nicotinamide and splitomicin enhanced the production of hematopoietic progenitors and mildly upregulated erythroid and myeloid-specific gene expression. Notably, splitomicin treatment led to an increase in the percentage of erythroid and myeloid lineage cells. Reference: Int J Stem Cells. 2019 Mar 30;12(1):21-30. https://pubmed.ncbi.nlm.nih.gov/30836727/
In vivo activity:
To be determined
Solvent mg/mL mM
Solubility
DMF 15.0 75.67
DMSO 20.0 100.90
Ethanol 15.0 75.67
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 198.22 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Park JA, Park S, Park WY, Han MK, Lee Y. Splitomicin, a SIRT1 Inhibitor, Enhances Hematopoietic Differentiation of Mouse Embryonic Stem Cells. Int J Stem Cells. 2019 Mar 30;12(1):21-30. doi: 10.15283/ijsc18040. PMID: 30836727; PMCID: PMC6457709. 2. Liu FC, Day YJ, Liou JT, Yu HP, Liao HR. Splitomicin inhibits fMLP-induced superoxide anion production in human neutrophils by activate cAMP/PKA signaling inhibition of ERK pathway. Eur J Pharmacol. 2012 Aug 5;688(1-3):68-75. doi: 10.1016/j.ejphar.2012.05.006. Epub 2012 May 23. PMID: 22634165.
In vitro protocol:
1. Park JA, Park S, Park WY, Han MK, Lee Y. Splitomicin, a SIRT1 Inhibitor, Enhances Hematopoietic Differentiation of Mouse Embryonic Stem Cells. Int J Stem Cells. 2019 Mar 30;12(1):21-30. doi: 10.15283/ijsc18040. PMID: 30836727; PMCID: PMC6457709. 2. Liu FC, Day YJ, Liou JT, Yu HP, Liao HR. Splitomicin inhibits fMLP-induced superoxide anion production in human neutrophils by activate cAMP/PKA signaling inhibition of ERK pathway. Eur J Pharmacol. 2012 Aug 5;688(1-3):68-75. doi: 10.1016/j.ejphar.2012.05.006. Epub 2012 May 23. PMID: 22634165.
In vivo protocol:
To be determined
1: Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15113-8. doi: 10.1073/pnas.261574398. PMID: 11752457; PMCID: PMC64992. 2: Hirao M, Posakony J, Nelson M, Hruby H, Jung M, Simon JA, Bedalov A. Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast. J Biol Chem. 2003 Dec 26;278(52):52773-82. doi: 10.1074/jbc.M308966200. Epub 2003 Oct 8. PMID: 14534292. 3: Horio Y, Hisahara S, Sakamoto J. [Functional analysis of SIR2]. Nihon Yakurigaku Zasshi. 2003 Nov;122 Suppl:30P-32P. Japanese. PMID: 14727515. 4: Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem. 2004 May 6;47(10):2635-44. doi: 10.1021/jm030473r. PMID: 15115404. 5: Posakony J, Hirao M, Bedalov A. Identification and characterization of Sir2 inhibitors through phenotypic assays in yeast. Comb Chem High Throughput Screen. 2004 Nov;7(7):661-8. doi: 10.2174/1386207043328346. PMID: 15578928. 6: Simon JA, Hirao M. [Chemistry and biology of NAD-dependent deacetylases]. Tanpakushitsu Kakusan Koso. 2005 Aug;50(9):1049-55. Japanese. PMID: 16083042. 7: Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol. 2005 Oct;9(5):431-40. doi: 10.1016/j.cbpa.2005.08.010. PMID: 16122969. 8: Kim IA, Shin JH, Kim IH, Kim JH, Kim JS, Wu HG, Chie EK, Ha SW, Park CI, Kao GD. Histone deacetylase inhibitor-mediated radiosensitization of human cancer cells: class differences and the potential influence of p53. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):940-9. doi: 10.1158/1078-0432.CCR-05-1230. PMID: 16467109. 9: Zhang Y, Adachi M, Zou H, Hareyama M, Imai K, Shinomura Y. Histone deacetylase inhibitors enhance phosphorylation of histone H2AX after ionizing radiation. Int J Radiat Oncol Biol Phys. 2006 Jul 1;65(3):859-66. doi: 10.1016/j.ijrobp.2006.03.019. PMID: 16751067. 10: Turdi S, Li Q, Lopez FL, Ren J. Catalase alleviates cardiomyocyte dysfunction in diabetes: role of Akt, Forkhead transcriptional factor and silent information regulator 2. Life Sci. 2007 Aug 23;81(11):895-905. doi: 10.1016/j.lfs.2007.07.029. Epub 2007 Aug 14. PMID: 17765928. 11: Dong F, Ren J. Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism. J Hypertens. 2007 Oct;25(10):2138-47. doi: 10.1097/HJH.0b013e32828626d1. PMID: 17885559. 12: Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007 Oct 26;28(2):277-90. doi: 10.1016/j.molcel.2007.08.030. Erratum in: Mol Cell. 2007 Nov 9;28(3):513. PMID: 17964266. 13: Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M. Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem. 2008 Mar 13;51(5):1203-13. doi: 10.1021/jm700972e. Epub 2008 Feb 13. PMID: 18269226. 14: Biacsi R, Kumari D, Usdin K. SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome. PLoS Genet. 2008 Mar 7;4(3):e1000017. doi: 10.1371/journal.pgen.1000017. PMID: 18369442; PMCID: PMC2265469. 15: Schemies J, Sippl W, Jung M. Histone deacetylase inhibitors that target tubulin. Cancer Lett. 2009 Aug 8;280(2):222-32. doi: 10.1016/j.canlet.2009.01.040. Epub 2009 Mar 5. PMID: 19268440. 16: Liu FC, Liao CH, Chang YW, Liou JT, Day YJ. Splitomicin suppresses human platelet aggregation via inhibition of cyclic AMP phosphodiesterase and intracellular Ca++ release. Thromb Res. 2009 Jun;124(2):199-207. doi: 10.1016/j.thromres.2009.02.013. Epub 2009 Mar 26. PMID: 19327818. 17: Kang MR, Lee SW, Um E, Kang HT, Hwang ES, Kim EJ, Um SJ. Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells. Nucleic Acids Res. 2010 Jan;38(3):822-31. doi: 10.1093/nar/gkp1056. Epub 2009 Nov 24. PMID: 19934264; PMCID: PMC2817470. 18: Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev. 2012 Jan;32(1):1-165. doi: 10.1002/med.20200. Epub 2010 Feb 16. PMID: 20162725. 19: Nadtochiy SM, Redman E, Rahman I, Brookes PS. Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res. 2011 Feb 15;89(3):643-9. doi: 10.1093/cvr/cvq287. Epub 2010 Sep 7. PMID: 20823277; PMCID: PMC3028968. 20: Breitenstein A, Stein S, Holy EW, Camici GG, Lohmann C, Akhmedov A, Spescha R, Elliott PJ, Westphal CH, Matter CM, Lüscher TF, Tanner FC. Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovasc Res. 2011 Feb 1;89(2):464-72. doi: 10.1093/cvr/cvq339. Epub 2010 Oct 26. PMID: 20978007.