MedKoo Cat#: 465295 | Name: Gypenoside XVII
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Gypenoside XVII is a saponin that has been found in P. notoginseng and has diverse biological activities. It induces autophagic clearance of amyloid-β precursor protein (APP), Aβ40, and Aβ42 in PC12 cells expressing Swedish mutant APP isoform 695 (APP695 Swe) when used at a concentration of 10 µM. Gypenoside XVII (40 mg/kg) prevents the formation of hippocampal and cortical Aβ plaques and ameliorates spatial cognitive deficits in the transgenic APP/PS1 mouse model of Alzheimer's disease. It decreases lipid deposition in the aortic sinus and serum levels of malondialdehyde (MDA), reduces aortic plaque area, and increases serum levels of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase in ApoE-/- mice. Gypenoside XVII (10 and 50 mg/kg) reduces spinal cord edema and neuronal apoptosis in a mouse model of mechanical compression-induced spinal cord injury. It also maintains retinal permeability and structure and reduces retinal levels of apoptotic proteins in a db/db mouse model of early diabetic retinopathy.

Chemical Structure

Gypenoside XVII
Gypenoside XVII
CAS#80321-69-3

Theoretical Analysis

MedKoo Cat#: 465295

Name: Gypenoside XVII

CAS#: 80321-69-3

Chemical Formula: C48H82O18

Exact Mass: 946.5501

Molecular Weight: 947.17

Elemental Analysis: C, 60.87; H, 8.73; O, 30.40

Price and Availability

Size Price Availability Quantity
5mg USD 350.00 2 Weeks
10mg USD 600.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Gypenoside XVII; Gypenoside-XVII; Ginsenoside XVII; Gyp-17; Gyp 17; Gyp17; Gyp-XVII; GypXVII; Gyp XVII; Gynosaponin S; Gynosaponin-S;
IUPAC/Chemical Name
(2R,3R,4S,5S,6R)-2-(((3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((S)-6-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hept-5-en-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
InChi Key
ZRBFCAALKKNCJG-SJYBZOGZSA-N
InChi Code
InChI=1S/C48H82O18/c1-22(2)10-9-14-48(8,66-43-40(60)37(57)34(54)27(64-43)21-61-41-38(58)35(55)32(52)25(19-49)62-41)23-11-16-47(7)31(23)24(51)18-29-45(5)15-13-30(44(3,4)28(45)12-17-46(29,47)6)65-42-39(59)36(56)33(53)26(20-50)63-42/h10,23-43,49-60H,9,11-21H2,1-8H3/t23-,24+,25+,26+,27+,28-,29+,30-,31-,32+,33+,34+,35-,36-,37-,38+,39+,40+,41+,42-,43-,45-,46+,47+,48-/m0/s1
SMILES Code
C[C@]12[C@@]3(C)[C@@]([H])([C@]([H])(CC3)[C@](C)(CC/C=C(C)/C)O[C@@H]4O[C@@H]([C@H]([C@@H]([C@H]4O)O)O)CO[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O)[C@H](O)C[C@@]1([C@]6(C)[C@@]([H])(CC2)C([C@@H](O[C@@H]7O[C@H](CO)[C@@H](O)[C@H](O)[C@H]7O)CC6)(C)C)[H]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Solvent mg/mL mM
Solubility
DMF 10.0 10.56
DMF:PBS (pH 7.2) (1:1) 0.2 0.21
DMSO 5.0 5.28
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 947.17 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Sun T, Duan L, Li J, Guo H, Xiong M. Gypenoside XVII protects against spinal cord injury in mice by regulating the microRNA‑21‑mediated PTEN/AKT/mTOR pathway. Int J Mol Med. 2021 Aug;48(2):146. doi: 10.3892/ijmm.2021.4979. Epub 2021 Jun 16. PMID: 34132355; PMCID: PMC8208621. 2: Sun H, Ma LJ, Wan JB, Tong S. Preparative separation of gypenoside XVII, ginsenoside Rd2, and notoginsenosides Fe and Fd from Panax notoginseng leaves by countercurrent chromatography and orthogonality evaluation for their separation. J Sep Sci. 2021 Jun 4. doi: 10.1002/jssc.202100078. Epub ahead of print. PMID: 34086419. 3: Luo Y, Dong X, Lu S, Gao Y, Sun G, Sun X. Gypenoside XVII alleviates early diabetic retinopathy by regulating Müller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol. 2021 Mar 15;895:173893. doi: 10.1016/j.ejphar.2021.173893. Epub 2021 Jan 22. PMID: 33493483. 4: Piyasirananda W, Beekman A, Ganesan A, Bidula S, Stokes L. Insights into the Structure-Activity Relationship of Glycosides as Positive Allosteric Modulators Acting on P2X7 Receptors. Mol Pharmacol. 2021 Feb;99(2):163-174. doi: 10.1124/molpharm.120.000129. Epub 2020 Dec 17. PMID: 33334897; PMCID: PMC7816042. 5: Ma LJ, Cao JL, Meng FC, Wang SP, Deng Y, Wang YT, Li P, Wan JB. Quantitative Characterization of Ginsenoside Biotransformation in Panax notoginseng Inflorescences and Leaves by Online Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry. J Agric Food Chem. 2020 May 13;68(19):5327-5338. doi: 10.1021/acs.jafc.0c01746. Epub 2020 May 4. Erratum in: J Agric Food Chem. 2020 Aug 12;68(32):8755-8756. PMID: 32320608. 6: Siddiqi MZ, Hashmi MS, Oh JM, Chun S, Im WT. Identification of novel glycoside hydrolases via whole genome sequencing of Niabella ginsenosidivorans for production of various minor ginsenosides. 3 Biotech. 2019 Jul;9(7):258. doi: 10.1007/s13205-019-1776-7. Epub 2019 Jun 10. PMID: 31192083; PMCID: PMC6556516. 7: Liu F, Ma N, Xia FB, Li P, He C, Wu Z, Wan JB. Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography. J Ginseng Res. 2019 Jan;43(1):105-115. doi: 10.1016/j.jgr.2017.09.003. Epub 2017 Oct 16. PMID: 30662299; PMCID: PMC6323246. 8: Li J, Li R, Li N, Zheng F, Dai Y, Ge Y, Yue H, Yu S. Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model. J Pharm Biomed Anal. 2018 Sep 5;158:451-460. doi: 10.1016/j.jpba.2018.06.024. Epub 2018 Jun 18. PMID: 30032757. 9: Wang J, Chen H, Gao J, Guo J, Zhao X, Zhou Y. Ginsenosides and ginsenosidases in the pathobiology of ginseng-Cylindrocarpon destructans (Zinss) Scholten. Plant Physiol Biochem. 2018 Feb;123:406-413. doi: 10.1016/j.plaphy.2017.12.038. Epub 2017 Dec 29. PMID: 29306188. 10: Ma LJ, Liu F, Zhong ZF, Wan JB. Comparative study on chemical components and anti-inflammatory effects of Panax notoginseng flower extracted by water and methanol. J Sep Sci. 2017 Dec;40(24):4730-4739. doi: 10.1002/jssc.201700641. Epub 2017 Nov 27. Erratum in: J Sep Sci. 2019 Sep;42(18):3041. PMID: 29068139. 11: Cui CH, Kim DJ, Jung SC, Kim SC, Im WT. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng- Cultivating Soil Bacteria and Its Anti-Cancer Property. Molecules. 2017 May 19;22(5):844. doi: 10.3390/molecules22050844. PMID: 28534845; PMCID: PMC6153937. 12: Xu XF, Xu SY, Zhang Y, Zhang H, Liu MN, Liu H, Gao Y, Xue X, Xiong H, Lin RC, Li XR. Chemical Comparison of Two Drying Methods of Mountain Cultivated Ginseng by UPLC-QTOF-MS/MS and Multivariate Statistical Analysis. Molecules. 2017 Apr 30;22(5):717. doi: 10.3390/molecules22050717. PMID: 28468295; PMCID: PMC6154546. 13: Yang K, Zhang H, Luo Y, Zhang J, Wang M, Liao P, Cao L, Guo P, Sun G, Sun X. Gypenoside XVII Prevents Atherosclerosis by Attenuating Endothelial Apoptosis and Oxidative Stress: Insight into the ERα-Mediated PI3K/Akt Pathway. Int J Mol Sci. 2017 Feb 9;18(2):77. doi: 10.3390/ijms18020077. PMID: 28208754; PMCID: PMC5343768. 14: Xu XF, Cheng XL, Lin QH, Li SS, Jia Z, Han T, Lin RC, Wang D, Wei F, Li XR. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. J Ginseng Res. 2016 Oct;40(4):344-350. doi: 10.1016/j.jgr.2015.11.001. Epub 2015 Nov 27. PMID: 27746686; PMCID: PMC5052403. 15: Meng X, Luo Y, Liang T, Wang M, Zhao J, Sun G, Sun X. Gypenoside XVII Enhances Lysosome Biogenesis and Autophagy Flux and Accelerates Autophagic Clearance of Amyloid-β through TFEB Activation. J Alzheimers Dis. 2016 Apr 5;52(3):1135-50. doi: 10.3233/JAD-160096. PMID: 27060963. 16: Zhong FL, Dong WW, Wu S, Jiang J, Yang DC, Li D, Quan LH. Biotransformation of gypenoside XVII to compound K by a recombinant β-glucosidase. Biotechnol Lett. 2016 Jul;38(7):1187-93. doi: 10.1007/s10529-016-2094-3. Epub 2016 Apr 8. PMID: 27060008. 17: Shin KC, Hong SH, Seo MJ, Oh DK. An amino acid at position 512 in β-glucosidase from Clavibacter michiganensis determines the regioselectivity for hydrolyzing gypenoside XVII. Appl Microbiol Biotechnol. 2015 Oct;99(19):7987-96. doi: 10.1007/s00253-015-6549-6. Epub 2015 Mar 31. PMID: 25820645. 18: Meng X, Wang M, Sun G, Ye J, Zhou Y, Dong X, Wang T, Lu S, Sun X. Attenuation of Aβ25-35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways. Toxicol Appl Pharmacol. 2014 Aug 15;279(1):63-75. doi: 10.1016/j.taap.2014.03.026. Epub 2014 Apr 12. PMID: 24726523. 19: Shin KC, Seo MJ, Oh HJ, Oh DK. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII. Biotechnol Lett. 2014 Jun;36(6):1287-93. doi: 10.1007/s10529-014-1472-y. Epub 2014 Feb 23. PMID: 24563303. 20: Shin KC, Oh DK. Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. J Biotechnol. 2014 Feb 20;172:30-7. doi: 10.1016/j.jbiotec.2013.11.026. Epub 2013 Dec 11. PMID: 24333127.