MedKoo Cat#: 465284 | Name: Tiliroside
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Tiliroside is a polyketide synthase-derived flavonoid glycoside that has been found in Q. ilex and has diverse biological activities. It inhibits carbonic anhydrase VII (CAVII; Ki = 4.6 nM), but not CAI, CAII, CAIV, or CAXII (Kis = >10, >10, 5.46, and 0.134 µM, respectively), in a cell-free assay. Tiliroside scavenges DPPH and superoxide radicals (IC50s = 12.8 and 42 µM, respectively) and is cytotoxic to Jurkat, HepG2, and COLO 205 cells (IC50s = 11.6, 14.3, and 55.4 µM, respectively). It reduces ear edema induced by phorbol 12-myristate 13-acetate (TPA) with an ID50 value of 0.357 mg/ear. Tiliroside (100 mg/kg) decreases triglyceride accumulation in the liver and skeletal muscle in high-fat diet-fed KKAy diabetic mice.

Chemical Structure

Tiliroside
Tiliroside
CAS#20316-62-5

Theoretical Analysis

MedKoo Cat#: 465284

Name: Tiliroside

CAS#: 20316-62-5

Chemical Formula: C30H26O13

Exact Mass: 594.1373

Molecular Weight: 594.53

Elemental Analysis: C, 60.61; H, 4.41; O, 34.98

Price and Availability

Size Price Availability Quantity
100mg USD 450.00 2 Weeks
200mg USD 750.00 2 Weeks
500mg USD 1,650.00 2 Weeks
1g USD 2,950.00 2 Weeks
2g USD 5,250.00 2 Weeks
5g USD 7,950.00 2 Weeks
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Tiliroside; Tribuloside; Trans-Tiliroside; Potengriffioside A
IUPAC/Chemical Name
((2R,3S,4S,5R,6S)-6-((5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate
InChi Key
DVGGLGXQSFURLP-VWMSDXGPSA-N
InChi Code
InChI=1S/C30H26O13/c31-16-6-1-14(2-7-16)3-10-22(35)40-13-21-24(36)26(38)27(39)30(42-21)43-29-25(37)23-19(34)11-18(33)12-20(23)41-28(29)15-4-8-17(32)9-5-15/h1-12,21,24,26-27,30-34,36,38-39H,13H2/b10-3+/t21-,24-,26+,27-,30+/m1/s1
SMILES Code
O=C1C(O[C@@H]2O[C@H](COC(/C=C/C3=CC=C(O)C=C3)=O)[C@@H](O)[C@H](O)[C@H]2O)=C(OC4=CC(O)=CC(O)=C14)C5=CC=C(O)C=C5
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Solvent mg/mL mM
Solubility
DMF 30.0 50.46
DMSO 30.0 50.46
DMSO:PBS (pH 7.2) (1:6) 0.1 0.24
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 594.53 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Bertella A, Smadi A, Benhabrou H, Salvador D, Wrona M, Oliveira H, Sidaoui A, Gavril-Luminita G, Pinto DCGA, Olewnik-Kruszkowska E, Nerín C, Silva AMS, Bitam F. Phytochemical Study and In Vitro Antioxidant Activity of Helianthemum cinereum Along with Antitumor Activity of the Isolated trans-Tiliroside and Luteolin 4'-O-β-Xyloside. Molecules. 2024 Dec 16;29(24):5935. doi: 10.3390/molecules29245935. PMID: 39770024. 2: Hafez Ghoran S, Abdjan MI, Kristanti AN, Aminah NS. Insights into in vitro and in silico studies of α-glucosidase inhibitors isolated from the leaves of Grewia optiva (Malvaceae). Int J Biol Macromol. 2024 Dec 10;287:138590. doi: 10.1016/j.ijbiomac.2024.138590. Epub ahead of print. PMID: 39667462. 3: Shang Y, Yan CY, Li H, Liu N, Zhang HF. Tiliroside protects against diabetic nephropathy in streptozotocin-induced diabetes rats by attenuating oxidative stress and inflammation. World J Diabetes. 2024 Nov 15;15(11):2220-2236. doi: 10.4239/wjd.v15.i11.2220. PMID: 39582560; PMCID: PMC11580572. 4: Feng X, Qin Y, Ma S, Ming S, Weng Z, Xuan Y, Gong S, Fan F, Chen P, Chu Q, Li Z. Liubao tea extract restrains obesity-related hyperlipidemia via regulation of AMPK/p38/NF-κB pathway and intestinal microbiota. Food Chem. 2025 Feb 1;464(Pt 3):141910. doi: 10.1016/j.foodchem.2024.141910. Epub 2024 Nov 5. PMID: 39522375. 5: Sameh S, Elissawy AM, Al-Sayed E, Labib RM, Chang HW, Yu SY, Chang FR, Yang SC, Singab ANB. Family Malvaceae: a potential source of secondary metabolites with chemopreventive and anticancer activities supported with in silico pharmacokinetic and pharmacodynamic profiles. Front Pharmacol. 2024 Oct 16;15:1465055. doi: 10.3389/fphar.2024.1465055. PMID: 39478959; PMCID: PMC11521888. 6: Chen J, Zhao Q, Xie K, Wang M, Li L, Zeng D, Wang Q, Wang S, Chen A, Xu G. A Mycorrhiza-Induced UDP-Glucosyl Transferase Negatively Regulates the Arbuscular Mycorrhizal Symbiosis. Plant Cell Environ. 2025 Feb;48(2):1643-1655. doi: 10.1111/pce.15241. Epub 2024 Oct 28. PMID: 39468788. 7: Mayo-Montor CI, Vidal-Limon A, Loyola-Vargas VM, Carmona-Hernández O, Barreda-Castillo JM, Monribot-Villanueva JL, Guerrero-Analco JA. Targeting Hypoglycemic Natural Products from the Cloud Forest Plants Using Chemotaxonomic Computer-Assisted Selection. Int J Mol Sci. 2024 Oct 10;25(20):10881. doi: 10.3390/ijms252010881. PMID: 39456663; PMCID: PMC11507857. 8: Yang X, Wang Y, Gong S, Xiong T, Xie L. Integrated metabolomics and network pharmacology reveal the procoagulant mechanisms of Cirsium setosum extracts. J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Oct 15;1247:124335. doi: 10.1016/j.jchromb.2024.124335. Epub 2024 Oct 9. PMID: 39395239. 9: Rao MJ, Duan M, Eman M, Yuan H, Sharma A, Zheng B. Comparative Analysis of Citrus Species' Flavonoid Metabolism, Gene Expression Profiling, and Their Antioxidant Capacity under Drought Stress. Antioxidants (Basel). 2024 Sep 23;13(9):1149. doi: 10.3390/antiox13091149. PMID: 39334808; PMCID: PMC11428974. 10: Du R, Xu F, Wei D, Wei Y, Wang Z, Wang Z. Pharmacokinetics of two triterpenoid saponins and three flavonoids in Astragalus membranaceus leaves by UHPLC-MS/MS. J Pharm Biomed Anal. 2024 Dec 15;251:116419. doi: 10.1016/j.jpba.2024.116419. Epub 2024 Aug 15. PMID: 39154580. 11: Demiroz Akbulut T, Demir S, Alsakini KAMH, Nalbantsoy A, Baykan S. Anti- inflammatory phenolic glycosides from endemic Marrubium rotundifolium Boiss. Nat Prod Res. 2024 Jul 17:1-9. doi: 10.1080/14786419.2024.2379011. Epub ahead of print. PMID: 39015030. 12: Chemam Y, Benayache S, Bouzina A, Marchioni E, Sekiou O, Bentoumi H, Zhao M, Bouslama Z, Aouf NE, Benayache F. Phytochemical on-line screening and in silico study of Helianthemum confertum: antioxidant activity, DFT, MD simulation, ADME/T analysis, and xanthine oxidase binding. RSC Adv. 2024 Jul 15;14(31):22209-22228. doi: 10.1039/d4ra02540g. PMID: 39010907; PMCID: PMC11247359. 13: Wójciak M, Mazurek B, Wójciak W, Kostrzewa D, Żuk M, Chmiel M, Kubrak T, Sowa I. Optimizing the Extraction of the Polyphenolic Fraction from Defatted Strawberry Seeds for Tiliroside Isolation Using Accelerated Solvent Extraction Combined with a Box-Behnken Design. Molecules. 2024 Jun 27;29(13):3051. doi: 10.3390/molecules29133051. PMID: 38999003; PMCID: PMC11243754. 14: Guo Y, Zhao W, He Y, Li A, Feng Q, Tian L. Research on the pharmacognostic characteristics, physicochemical properties and in vitro antioxidant potency of Rosa laxa Retz. flos. Microsc Res Tech. 2024 Oct;87(10):2487-2503. doi: 10.1002/jemt.24622. Epub 2024 Jun 10. PMID: 38856633. 15: Szűcs Z, Cziáky Z, Volánszki L, Máthé C, Vasas G, Gonda S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. Plants (Basel). 2024 May 7;13(10):1288. doi: 10.3390/plants13101288. PMID: 38794359; PMCID: PMC11124948. 16: Zhang L, Dang B, Lan Y, Zheng W, Kuang J, Zhang J, Zhang W. Metabolomics Characterization of Phenolic Compounds in Colored Quinoa and Their Relationship with In Vitro Antioxidant and Hypoglycemic Activities. Molecules. 2024 Mar 28;29(7):1509. doi: 10.3390/molecules29071509. PMID: 38611788; PMCID: PMC11013001. 17: Wei B, Zheng W, Peng Z, Xiao M, Huang T, Xie M, Xiong T. Probiotic-fermented tomato with hepatic lipid metabolism modulation effects: analysis of physicochemical properties, bioactivities, and potential bioactive compounds. Food Funct. 2024 May 7;15(9):4874-4886. doi: 10.1039/d3fo05535c. PMID: 38590277. 18: Owoloye AJ, Olubode SO, Ogunleye A, Idowu ET, Oyebola KM. Computational identification of potential modulators of heme-regulated inhibitor (HRI) for pharmacological intervention against sickle cell disease. J Biomol Struct Dyn. 2024 Mar 31:1-13. doi: 10.1080/07391102.2024.2331097. Epub ahead of print. PMID: 38555858. 19: Nguyen TVA, Nguyen TMH, Ha TT, Nguyen TD, Bui DH. Antiplatelet and Anticoagulant Effects of Two New Phenylpropanoid Sucrose Esters and Other Secondary Metabolites from the Aerial Part of Canna edulis. Chem Biodivers. 2024 May;21(5):e202400302. doi: 10.1002/cbdv.202400302. Epub 2024 Mar 27. PMID: 38454878. 20: Zhang X, Xue Q, Zhao J, Zhang H, Dong J, Cao J, Wang Y, Liu Y, Cheng G. Chemical Constituents, Hypolipidemic, and Hypoglycemic Activities of Edgeworthia gardneri Flowers. Plant Foods Hum Nutr. 2024 Jun;79(2):440-450. doi: 10.1007/s11130-024-01154-1. Epub 2024 Mar 5. PMID: 38441843.