MedKoo Cat#: 414250 | Name: Rhoifolin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Rhoifolin is a chemical compound. It is first isolated from plant Rhus succedanea. The term "Rhoi" derived from generic name of plant Rhus.

Chemical Structure

Rhoifolin
Rhoifolin
CAS#17306-46-6

Theoretical Analysis

MedKoo Cat#: 414250

Name: Rhoifolin

CAS#: 17306-46-6

Chemical Formula: C27H30O14

Exact Mass: 578.1636

Molecular Weight: 578.52

Elemental Analysis: C, 56.06; H, 5.23; O, 38.72

Price and Availability

Size Price Availability Quantity
5mg USD 200.00 2 Weeks
10mg USD 400.00 2 Weeks
25mg USD 750.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Rhoifolin; NSC649413; NSC-649413; NSC 649413
IUPAC/Chemical Name
7-[[2-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one
InChi Key
RPMNUQRUHXIGHK-PYXJVEIZSA-N
InChi Code
InChI=1S/C27H30O14/c1-10-20(32)22(34)24(36)26(37-10)41-25-23(35)21(33)18(9-28)40-27(25)38-13-6-14(30)19-15(31)8-16(39-17(19)7-13)11-2-4-12(29)5-3-11/h2-8,10,18,20-30,32-36H,9H2,1H3/t10-,18+,20-,21+,22+,23-,24+,25+,26-,27+/m0/s1
SMILES Code
O=C1C2=C(O)C=C(O[C@H]3[C@H](O[C@]4([H])O[C@@H](C)[C@H](O)[C@@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@@H](CO)O3)C=C2OC(C5=CC=C(O)C=C5)=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Rhoifolin inhibits Ezrin phosphorylation, cell migration, and TGF-β1-induced epithelial-to-mesenchymal transition (EMT) in MDA-MB-231 cells. Rhoifolin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), also known as 3C-like protease (3CLpro; IC50 = 27.45 µM). It reverses scopolamine-induced memory deficits and inhibits acetylcholinesterase (AChE) activity in zebrafish when administered in the tank water at concentrations of 1, 3, and 5 µg/L. Rhoifolin (20 and 40 mg/kg) reduces paw edema and IL-1β, IL-6, and TNF-α levels in a rat model of carrageenan-induced inflammation. It also ameliorates cartilage damage in a rat model of osteoarthritis, an effect that can be reversed by the autophagy inhibitor 3-methyladenine.
In vitro activity:
Rhoifolin regulates the AKT/JNK/caspase-3 and TGF-β2/SMAD2 signaling pathways, which may contribute to its anti-pancreatic cancer effects. Reference: Sci Rep. 2022 Apr 5;12(1):5654. https://pubmed.ncbi.nlm.nih.gov/35383226/
In vivo activity:
Results from this study indicate that rhoifolin treatment reduces oxidative stress and inflammation in cecal ligation and puncture induced sepsis mice, because rhoifolin regulates TLR4/MyD88/NF-κB pathway. Reference: Microb Pathog. 2023 Jul;180:106112. https://pubmed.ncbi.nlm.nih.gov/37059211/
Solvent mg/mL mM
Solubility
DMSO 62.5 108.03
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 578.52 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep. 2022 Apr 5;12(1):5654. doi: 10.1038/s41598-022-09581-3. PMID: 35383226; PMCID: PMC8983741. 2. Xiong L, Lu H, Hu Y, Wang W, Liu R, Wan X, Fu J. In vitro anti-motile effects of Rhoifolin, a flavonoid extracted from Callicarpa nudiflora on breast cancer cells via downregulating Podocalyxin-Ezrin interaction during Epithelial Mesenchymal Transition. Phytomedicine. 2021 Dec;93:153486. doi: 10.1016/j.phymed.2021.153486. Epub 2021 Jan 28. PMID: 34649211. 3. Wen S, Ma Z, Tripathi AS. Rhoifolin protects cecal ligation and puncture induced sepsis mice model by regulating inflammatory pathway. Microb Pathog. 2023 Jul;180:106112. doi: 10.1016/j.micpath.2023.106112. Epub 2023 Apr 12. PMID: 37059211. 4. Peng S, Hu C, Liu X, Lei L, He G, Xiong C, Wu W. Rhoifolin regulates oxidative stress and proinflammatory cytokine levels in Freund's adjuvant-induced rheumatoid arthritis via inhibition of NF-κB. Braz J Med Biol Res. 2020;53(6):e9489. doi: 10.1590/1414-431x20209489. Epub 2020 May 8. PMID: 32401927; PMCID: PMC7233197.
In vitro protocol:
1. Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep. 2022 Apr 5;12(1):5654. doi: 10.1038/s41598-022-09581-3. PMID: 35383226; PMCID: PMC8983741. 2. Xiong L, Lu H, Hu Y, Wang W, Liu R, Wan X, Fu J. In vitro anti-motile effects of Rhoifolin, a flavonoid extracted from Callicarpa nudiflora on breast cancer cells via downregulating Podocalyxin-Ezrin interaction during Epithelial Mesenchymal Transition. Phytomedicine. 2021 Dec;93:153486. doi: 10.1016/j.phymed.2021.153486. Epub 2021 Jan 28. PMID: 34649211.
In vivo protocol:
1. Wen S, Ma Z, Tripathi AS. Rhoifolin protects cecal ligation and puncture induced sepsis mice model by regulating inflammatory pathway. Microb Pathog. 2023 Jul;180:106112. doi: 10.1016/j.micpath.2023.106112. Epub 2023 Apr 12. PMID: 37059211. 2. Peng S, Hu C, Liu X, Lei L, He G, Xiong C, Wu W. Rhoifolin regulates oxidative stress and proinflammatory cytokine levels in Freund's adjuvant-induced rheumatoid arthritis via inhibition of NF-κB. Braz J Med Biol Res. 2020;53(6):e9489. doi: 10.1590/1414-431x20209489. Epub 2020 May 8. PMID: 32401927; PMCID: PMC7233197.
1: Liu Y, Jin Z, Sun D, Zheng J, Xu B, Lan T, Zhao Q, He Y, Li J, Zhang Y, Cui Y. Preparation of monoclonal antibody against rhoifolin and its application in enzyme-linked immunosorbent assay of rhoifolin and diosmin. Talanta. 2024 Sep 11;281:126871. doi: 10.1016/j.talanta.2024.126871. Epub ahead of print. PMID: 39276572. 2: Posadino AM, Maccioccu P, Eid AH, Giordo R, Pintus G, Fenu G. Citrus limon var. pompia Camarda var. nova: A Comprehensive Review of Its Botanical Characteristics, Traditional Uses, Phytochemical Profile, and Potential Health Benefits. Nutrients. 2024 Aug 8;16(16):2619. doi: 10.3390/nu16162619. PMID: 39203756; PMCID: PMC11357429. 3: Sharanya CS, Wilbee DS, Sathi SN, Natarajan K. Computational screening combined with well-tempered metadynamics simulations identifies potential TMPRSS2 inhibitors. Sci Rep. 2024 Jul 13;14(1):16197. doi: 10.1038/s41598-024-65296-7. PMID: 39003338; PMCID: PMC11246518. 4: Al-Shalabi E, Sunoqrot S, Al-Zuhd T, Alshehada RS, Ibrahim AIM, Hammad A. Exploring the Antioxidant and Anti-inflammatory effect of Rhoifolin Extracted from Teucrium polium in Rats' Lungs Exposed to Tobacco Smoke. Chem Biodivers. 2024 Jul 13:e202400958. doi: 10.1002/cbdv.202400958. Epub ahead of print. PMID: 39001681. 5: Zhang X, Yu X, Sun X, Meng X, Fan J, Zhang F, Zhang Y. Comparative study on chemical constituents of different medicinal parts of Lonicera japonica Thunb. Based on LC-MS combined with multivariate statistical analysis. Heliyon. 2024 May 29;10(12):e31722. doi: 10.1016/j.heliyon.2024.e31722. PMID: 38975169; PMCID: PMC11225679. 6: Li N, Li C, Zheng A, Liu W, Shi Y, Jiang M, Xiao Y, Qiu Z, Qiu Y, Jia A. Ultra-high-performance liquid chromatography-mass spectrometry combined with molecular docking and molecular dynamics simulation reveals the source of bitterness in the traditional Chinese medicine formula Runchang-Tongbian. Biomed Chromatogr. 2024 Aug;38(8):e5929. doi: 10.1002/bmc.5929. Epub 2024 Jun 17. PMID: 38881323. 7: Wang Y, Liao Y, Gou C, Zhang H, Chen L, Bao Y. Effect of Lentinus sajor- caju on the chemical composition and antioxidant activity of highland barley straw under solid-state fermentation. Front Microbiol. 2024 May 22;15:1365254. doi: 10.3389/fmicb.2024.1365254. PMID: 38841071; PMCID: PMC11150714. 8: Afzan A, Marcourt L, Abd Karim HA, Kasim N, Queiroz EF, Osman CP, Ismail NH, Wolfender JL. Chemical characterizations dataset of flavonoid glycoside isomers and other constituents from Ficus deltoidea Jack. Data Brief. 2024 Apr 14;54:110414. doi: 10.1016/j.dib.2024.110414. PMID: 38690315; PMCID: PMC11058097. 9: Huang X, Liu X, Wang Q, Zhou Y, Deng S, He Q, Han H. Transcriptomic and targeted metabolome analyses revealed the regulatory mechanisms of the synthesis of bioactive compounds in Citrus grandis 'tomentosa'. PeerJ. 2024 Feb 23;12:e16881. doi: 10.7717/peerj.16881. PMID: 38410798; PMCID: PMC10896087. 10: Chang X, Fang X, Yao Y, Xu Z, Wu C, Lu L. Identification and Characterization of Glycosyltransferases Involved in the Biosynthesis of Neodiosmin. J Agric Food Chem. 2024 Feb 28;72(8):4348-4357. doi: 10.1021/acs.jafc.3c09308. Epub 2024 Feb 14. PMID: 38354268. 11: Tian X, Qin J, Luo Q, Xu Y, Xie S, Chen R, Wang X, Lu Q. Differences in Chemical Composition, Polyphenol Compounds, Antioxidant Activity, and In Vitro Rumen Fermentation among Sorghum Stalks. Animals (Basel). 2024 Jan 27;14(3):415. doi: 10.3390/ani14030415. PMID: 38338059; PMCID: PMC10854691. 12: Rani M, Sharma AK, Chouhan RS, Sur S, Mansuri R, Singh RK. Natural flavonoid pectolinarin computationally targeted as a promising drug candidate against SARS-CoV-2. Curr Res Struct Biol. 2023 Dec 15;7:100120. doi: 10.1016/j.crstbi.2023.100120. PMID: 38205118; PMCID: PMC10776443. 13: Zhang W, Zhang H, Zhao G, Wang N, Guo L, Hou X. Molecular mechanism of somatic embryogenesis in paeonia ostii 'Fengdan' based on transcriptome analysis combined histomorphological observation and metabolite determination. BMC Genomics. 2023 Nov 3;24(1):665. doi: 10.1186/s12864-023-09730-6. PMID: 37924006; PMCID: PMC10625268. 14: Saher F, Ijaz MU, Hamza A, Ain QU, Hayat MF, Afsar T, Almajwal A, Shafique H, Razak S. Mitigative potential of rhoifolin against cisplatin prompted testicular toxicity: biochemical, spermatogenic and histological based analysis. Toxicol Res (Camb). 2023 Aug 26;12(5):814-823. doi: 10.1093/toxres/tfad073. PMID: 37915485; PMCID: PMC10615821. 15: Marzouk M, Khalifa SM, Ahmed AH, Metwaly AM, Sh Mohammed H, Taie HAA. LC/HRESI-MS/MS screening, phytochemical characterization, and in vitro antioxidant and cytotoxic potential of Jatropha integerrima Jacq. extracts. Bioorg Chem. 2023 Nov;140:106825. doi: 10.1016/j.bioorg.2023.106825. Epub 2023 Sep 3. Erratum in: Bioorg Chem. 2024 Jan;142:106881. doi: 10.1016/j.bioorg.2023.106881. PMID: 37683543. 16: Zengin G, Mostafa NM, Abdelkhalek YM, Eldahshan OA. Antioxidant and Enzyme Inhibitory Activities of Rhoifolin Flavonoid: In Vitro and in Silico Studies. Chem Biodivers. 2023 Sep;20(9):e202300117. doi: 10.1002/cbdv.202300117. Epub 2023 Aug 9. PMID: 37498319. 17: Xin Z, Yang W, Niu L, Zhang Y. Comprehensive Metabolite Profile Uncovers the Bioactive Components, Antioxidant and Antibacterial Activities in Wild Tree Peony Leaves. Int J Mol Sci. 2023 Jun 25;24(13):10609. doi: 10.3390/ijms241310609. PMID: 37445786; PMCID: PMC10342129. 18: Huang D, Wu PE, Chen ZJ, Pang YC, Xu ZW, Tan J, Jiang ZH, Yang BB, Zhan R, Xu H, Liu YQ. Ethanol Extract of Citrus grandis 'Tomentosa' Exerts Anticancer Effects by Targeting Skp2/p27 Pathway in Non-Small Cell Lung Cancer. Mol Nutr Food Res. 2023 Sep;67(18):e2300061. doi: 10.1002/mnfr.202300061. Epub 2023 Jul 12. PMID: 37436082. 19: Effah Z, Li L, Xie J, Karikari B, Xu A, Wang L, Du C, Duku Boamah E, Adingo S, Zeng M. Widely untargeted metabolomic profiling unearths metabolites and pathways involved in leaf senescence and N remobilization in spring-cultivated wheat under different N regimes. Front Plant Sci. 2023 May 16;14:1166933. doi: 10.3389/fpls.2023.1166933. PMID: 37260937; PMCID: PMC10227437. 20: Uppal T, Tuffo K, Khaiboullina S, Reganti S, Pandori M, Verma SC. Screening of SARS-CoV-2 antivirals through a cell-based RNA-dependent RNA polymerase (RdRp) reporter assay. Cell Insight. 2022 Jun 29;1(4):100046. doi: 10.1016/j.cellin.2022.100046. PMID: 37192863; PMCID: PMC9239919.