MedKoo Cat#: 464708 | Name: Sinapyl alcohol
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Sinapyl alcohol is a monolignol and an aglycone form of syringin that has been found in Populus alba and has anti-inflammatory and antinociceptive activities. It is a precursor in the biosynthesis of lignin. Sinapyl alcohol (50, 100, and 200 µM) reduces LPS-induced production of nitrite, prostaglandin E2 (PGE2), and TNF-α in RAW 264.7 cells. Sinapyl alcohol (20 and 30 mg/kg) inhibits acetic acid-induced writhing and increases the latency to paw licking in the hot plate test in mice.

Chemical Structure

Sinapyl alcohol
Sinapyl alcohol
CAS#537-33-7

Theoretical Analysis

MedKoo Cat#: 464708

Name: Sinapyl alcohol

CAS#: 537-33-7

Chemical Formula: C11H14O4

Exact Mass: 210.0892

Molecular Weight: 210.23

Elemental Analysis: C, 62.85; H, 6.71; O, 30.44

Price and Availability

Size Price Availability Quantity
50mg USD 300.00 2 Weeks
100mg USD 550.00 2 Weeks
250mg USD 950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Sinapyl Alcohol;
IUPAC/Chemical Name
(E)-4-(3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenol
InChi Key
LZFOPEXOUVTGJS-ONEGZZNKSA-N
InChi Code
InChI=1S/C11H14O4/c1-14-9-6-8(4-3-5-12)7-10(15-2)11(9)13/h3-4,6-7,12-13H,5H2,1-2H3/b4-3+
SMILES Code
OC1=C(C=C(C=C1OC)/C=C/CO)OC
Appearance
Solid powder
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, DMF, and ethanol
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Sinapyl alcohol (50, 100, and 200 µM) reduces LPS-induced production of nitrite, prostaglandin E2 (PGE2), and TNF-α in RAW 264.7 cells. Sinapyl alcohol (20 and 30 mg/kg) inhibits acetic acid-induced writhing and increases the latency to paw licking in the hot plate test in mice. Sinapyl alcohol is an orally active anti-inflammatory and antinociceptive agent. Sinapyl alcohol reduces the expression level of inducible NO synthase and COX-2.
In vitro activity:
Sinapyl alcohol also more effectively reduced nitric oxide, prostaglandin E2, and tumor necrosis factor-alpha production by macrophages, along with downregulating inducible NO synthase and cyclooxygenase-2 expression. Reference: Planta Med. 2004 Nov;70(11):1027-32. https://pubmed.ncbi.nlm.nih.gov/15549657/
In vivo activity:
Sinapyl alcohol demonstrated stronger inhibitory effects on vascular permeability, paw edema, and pain in animal models compared to syringin. Reference: Planta Med. 2004 Nov;70(11):1027-32. https://pubmed.ncbi.nlm.nih.gov/15549657/
Solvent mg/mL mM comments
Solubility
DMF 30.0 142.70
DMSO 30.0 142.70
Ethanol 30.0 142.70
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 210.23 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Choi J, Shin KM, Park HJ, Jung HJ, Kim HJ, Lee YS, Rew JH, Lee KT. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004 Nov;70(11):1027-32. doi: 10.1055/s-2004-832642. PMID: 15549657.
In vitro protocol:
1. Choi J, Shin KM, Park HJ, Jung HJ, Kim HJ, Lee YS, Rew JH, Lee KT. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004 Nov;70(11):1027-32. doi: 10.1055/s-2004-832642. PMID: 15549657.
In vivo protocol:
1. Choi J, Shin KM, Park HJ, Jung HJ, Kim HJ, Lee YS, Rew JH, Lee KT. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004 Nov;70(11):1027-32. doi: 10.1055/s-2004-832642. PMID: 15549657.
1: Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via transport of sinapyl alcohol for cell wall lignification in wheat. Plant Commun. 2024 Sep 3:101077. doi: 10.1016/j.xplc.2024.101077. Epub ahead of print. PMID: 39233441. 2: Xuan H, Cheng J, Pang L, Yin L, Guan Y, Cheng J, Lu X, Lu G. Physiological- Biochemical Characteristics and a Transcriptomic Profiling Analysis Reveal the Postharvest Wound Healing Mechanisms of Sweet Potatoes under Ascorbic Acid Treatment. Foods. 2024 Aug 17;13(16):2569. doi: 10.3390/foods13162569. PMID: 39200496. 3: Feng N, Hu J, Zhao X, Chen J, Tang F, Liang S, Zhu X, Yang X, Yang H, Wu Q. Lignin nanoparticles formation by multiscale structure control to regulate morphology and their adsorption, nucleation, and growth on chitin nanofibers. J Colloid Interface Sci. 2024 Jul 31;677(Pt A):918-927. doi: 10.1016/j.jcis.2024.07.235. Epub ahead of print. PMID: 39128286. 4: Qian Q, Pan J, Yang J, Wang R, Luo K, Wu Z, Ma S, Wang Y, Li M, Gao Y. Syringin: a naturally occurring compound with medicinal properties. Front Pharmacol. 2024 Jul 22;15:1435524. doi: 10.3389/fphar.2024.1435524. PMID: 39104400; PMCID: PMC11298447. 5: Zhou T, Xing Q, Bu J, Han W, Shen Z. Integrated metabolomic and transcriptomic analysis reveals the regulatory mechanisms of flavonoid and alkaloid biosynthesis in the new and old leaves of Murraya tetramera Huang. BMC Plant Biol. 2024 Jun 5;24(1):499. doi: 10.1186/s12870-024-05066-9. PMID: 38840069; PMCID: PMC11151518. 6: Tomasetig D, Wang C, Hondl N, Friedl A, Ejima H. Exploring Caffeic Acid and Lignosulfonate as Key Phenolic Ligands for Metal-Phenolic Network Assembly. ACS Omega. 2024 Apr 26;9(18):20444-20453. doi: 10.1021/acsomega.4c01399. PMID: 38737076; PMCID: PMC11080005. 7: Zhang R, Bai X, Chen Z, Chen M, Li X, Zeng B, Hu B. Physiological, Biochemical, and Molecular Analyses Reveal Dark Heartwood Formation Mechanism in Acacia melanoxylon. Int J Mol Sci. 2024 May 2;25(9):4974. doi: 10.3390/ijms25094974. PMID: 38732191; PMCID: PMC11084464. 8: Shettar PS, Hiremath MB. GC-MS analysis and anti-oxidant activity of bioactive compounds of Simarouba glauca leaf extracts. Nat Prod Res. 2024 Apr 23:1-10. doi: 10.1080/14786419.2024.2344737. Epub ahead of print. PMID: 38651517. 9: Koistinen VM, Haldar S, Tuomainen M, Lehtonen M, Klåvus A, Draper J, Lloyd A, Beckmann M, Bal W, Ross AB, Brandt K, Fawcett L, Seal C, Hanhineva K. Metabolic changes in response to varying whole-grain wheat and rye intake. NPJ Sci Food. 2024 Jan 30;8(1):8. doi: 10.1038/s41538-024-00247-0. PMID: 38291073; PMCID: PMC10828387. 10: Wang F, Zhao W, Lv W, Li P, Tian M, Xu S, Li L, Wang R, Liu F, Chen Y, Feng X. Identification and Functional Characterization of a Novel Sinapyl Alcohol Acyltransferase from Euphorbia lathyris L. J Agric Food Chem. 2023 Dec 20;71(50):20187-20197. doi: 10.1021/acs.jafc.3c07127. Epub 2023 Dec 4. PMID: 38044624. 11: Guo Y, Alvigini L, Saifuddin M, Ashley B, Trajkovic M, Alonso-Cotchico L, Mattevi A, Fraaije MW. One-Pot Biocatalytic Synthesis of rac-Syringaresinol from a Lignin-Derived Phenol. ACS Catal. 2023 Oct 31;13(22):14639-14649. doi: 10.1021/acscatal.3c04399. PMID: 38026814; PMCID: PMC10660655. 12: Nisar S, Raza ZA. Corn straw lignin - A sustainable bioinspired finish for superhydrophobic and UV-protective cellulose fabric. Int J Biol Macromol. 2024 Feb;257(Pt 1):128393. doi: 10.1016/j.ijbiomac.2023.128393. Epub 2023 Nov 25. PMID: 38013073. 13: Shah T, Khan Z, Khan SR, Imran A, Asad M, Ahmad A, Ahmad P. Silicon inhibits cadmium uptake by regulating the genes associated with the lignin biosynthetic pathway and plant hormone signal transduction in maize plants. Environ Sci Pollut Res Int. 2023 Dec;30(59):123996-124009. doi: 10.1007/s11356-023-31044-z. Epub 2023 Nov 23. PMID: 37995035. 14: Hanko EKR, Valdehuesa KNG, Verhagen KJA, Chromy J, Stoney RA, Chua J, Yan C, Roubos JA, Schmitz J, Breitling R. Carboxylic acid reductase-dependent biosynthesis of eugenol and related allylphenols. Microb Cell Fact. 2023 Nov 18;22(1):238. doi: 10.1186/s12934-023-02246-4. PMID: 37980525; PMCID: PMC10656918. 15: Hao Y, Cai Z, Ma C, White JC, Cao Y, Chang Z, Xu X, Han L, Jia W, Zhao J, Xing B. Root Exposure of Graphitic Carbon Nitride (g-C3N4) Modulates Metabolite Profile and Endophytic Bacterial Community to Alleviate Cadmium- and Arsenate-Induced Phytotoxicity to Rice (Oryza sativa L.). ACS Nano. 2023 Oct 24;17(20):19724-19739. doi: 10.1021/acsnano.3c03066. Epub 2023 Oct 9. PMID: 37812587. 16: Yamaguchi A, Kishimoto T, Urabe D. Initial Stage of Syringyl Lignin Formation from Sinapyl Alcohol. J Agric Food Chem. 2023 Oct 11;71(40):14666-14677. doi: 10.1021/acs.jafc.3c03402. Epub 2023 Sep 29. PMID: 37774119. 17: Yoshioka K, Kim H, Lu F, De Ridder N, Vanholme R, Kajita S, Boerjan W, Ralph J. Hydroxycinnamaldehyde-derived benzofuran components in lignins. Plant Physiol. 2024 Feb 29;194(3):1370-1382. doi: 10.1093/plphys/kiad514. PMID: 37773018. 18: Zhang Z, Long Y, Yin X, Wang W, Li W, Chen T, Chen J, Chen X, Wang B, Ma J. Metabolome and Transcriptome Analysis of Sulfur-Induced Kiwifruit Stem Laccase Gene Involved in Syringyl Lignin Synthesis against Bacterial Canker. J Agric Food Chem. 2023 Sep 13;71(36):13566-13576. doi: 10.1021/acs.jafc.3c02653. Epub 2023 Aug 31. PMID: 37651104. 19: Li C, Yao Y, Liu X, Chen H, Li X, Zhao M, Zhao H, Wang Y, Cheng Z, Wang L, Cheng J, Sun H. Integrated metabolomics, transcriptomics, and proteomics analyses reveal co-exposure effects of polycyclic aromatic hydrocarbons and cadmium on ryegrass (Lolium perenne L.). Environ Int. 2023 Aug;178:108105. doi: 10.1016/j.envint.2023.108105. Epub 2023 Jul 20. PMID: 37517176. 20: Muro-Villanueva F, Pysh LD, Kim H, Bouse T, Ralph J, Luo Z, Cooper BR, Jannasch AS, Zhang Z, Gu C, Chapple C. Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing FERULATE 5-HYDROXYLASE. Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2216543120. doi: 10.1073/pnas.2216543120. Epub 2023 Jul 24. PMID: 37487096; PMCID: PMC10401026.