1: Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD+ Regeneration in Mediated NAD+-Dependent Bioelectrocatalysis. ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10942-10951. doi: 10.1021/acsami.0c22302. Epub 2021 Mar 1. PMID: 33646753.
2: Hatada M, Saito S, Yonehara S, Tsugawa W, Asano R, Ikebukuro K, Sode K. Development of glycated peptide enzyme sensor based flow injection analysis system for haemoglobin A1c monitoring using quasi-direct electron transfer type engineered fructosyl peptide oxidase. Biosens Bioelectron. 2021 Apr 1;177:112984. doi: 10.1016/j.bios.2021.112984. Epub 2021 Jan 8. PMID: 33477030.
3: Jahn B, Jonasson NSW, Hu H, Singer H, Pol A, Good NM, den Camp HJMO, Martinez-Gomez NC, Daumann LJ. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster's Blue in methanol dehydrogenase assays. J Biol Inorg Chem. 2020 Mar;25(2):199-212. doi: 10.1007/s00775-020-01752-9. Epub 2020 Feb 14. PMID: 32060650; PMCID: PMC7082304.
4: Suzuki N, Lee J, Loew N, Takahashi-Inose Y, Okuda-Shimazaki J, Kojima K, Mori K, Tsugawa W, Sode K. Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator. Int J Mol Sci. 2020 Feb 8;21(3):1137. doi: 10.3390/ijms21031137. PMID: 32046321; PMCID: PMC7036908.
5: Hiraka K, Kojima K, Tsugawa W, Asano R, Ikebukuro K, Sode K. Rational engineering of Aerococcus viridansl-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. Biosens Bioelectron. 2020 Mar 1;151:111974. doi: 10.1016/j.bios.2019.111974. Epub 2019 Dec 18. PMID: 31999581.
6: Kalimuthu P, Daumann LJ, Pol A, Op den Camp HJM, Bernhardt PV. Electrocatalysis of a Europium-Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron-Acceptor Cytochrome cGJ. Chemistry. 2019 Jul 2;25(37):8760-8768. doi: 10.1002/chem.201900525. Epub 2019 May 20. PMID: 30908783.
7: Hatada M, Loew N, Inose-Takahashi Y, Okuda-Shimazaki J, Tsugawa W, Mulchandani A, Sode K. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Bioelectrochemistry. 2018 Jun;121:185-190. doi: 10.1016/j.bioelechem.2018.02.001. Epub 2018 Feb 9. PMID: 29471242.
8: Baker JL, Faustoferri RC, Quivey RG Jr. A Modified Chromogenic Assay for Determination of the Ratio of Free Intracellular NAD+/NADH in Streptococcus mutans. Bio Protoc. 2016 Aug 20;6(16):e1902. doi: 10.21769/BioProtoc.1902. PMID: 28516115; PMCID: PMC5431588.
9: Okamoto A, Tanaka M, Sumi C, Oku K, Kusunoki M, Nishi K, Matsuo Y, Takenaga K, Shingu K, Hirota K. The antioxidant N-acetyl cysteine suppresses lidocaine- induced intracellular reactive oxygen species production and cell death in neuronal SH-SY5Y cells. BMC Anesthesiol. 2016 Oct 24;16(1):104. doi: 10.1186/s12871-016-0273-3. PMID: 27776485; PMCID: PMC5078905.
10: Al-Attar S, de Vries S. An electrogenic nitric oxide reductase. FEBS Lett. 2015 Jul 22;589(16):2050-7. doi: 10.1016/j.febslet.2015.06.033. Epub 2015 Jul 3. PMID: 26149211.
11: Leow D. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes. Org Lett. 2014 Nov 7;16(21):5812-5. doi: 10.1021/ol5029354. Epub 2014 Oct 28. PMID: 25350690.
12: Ghanem N, Ha AN, Fakruzzaman M, Bang JI, Lee SC, Kong IK. Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism. Theriogenology. 2014 Jul 15;82(2):238-50. doi: 10.1016/j.theriogenology.2014.03.024. Epub 2014 Apr 4. PMID: 24786394.
13: Johnson JL, Gonzalez de Mejia E. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol. 2013 Oct;60:83-91. doi: 10.1016/j.fct.2013.07.036. Epub 2013 Jul 18. PMID: 23871783.
14: Stenuit B, Lamblin G, Cornelis P, Agathos SN. Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides. Environ Sci Technol. 2012 Oct 2;46(19):10605-13. doi: 10.1021/es302046h. Epub 2012 Sep 10. PMID: 22881832.
15: Gajda B, Romek M, Grad I, Krzysztofowicz E, Bryla M, Smorag Z. Lipid content and cryotolerance of porcine embryos cultured with phenazine ethosulfate. Cryo Letters. 2011 Jul-Aug;32(4):349-57. PMID: 22020414.
16: Romek M, Gajda B, Krzysztofowicz E, Kepczyński M, Smorag Z. Lipid content in pig blastocysts cultured in the presence or absence of protein and vitamin E or phenazine ethosulfate. Folia Biol (Krakow). 2011;59(1-2):45-52. PMID: 21614967.
17: Sudano MJ, Paschoal DM, Rascado Tda S, Magalhães LC, Crocomo LF, de Lima- Neto JF, Landim-Alvarenga Fda C. Lipid content and apoptosis of in vitro- produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology. 2011 Apr 15;75(7):1211-20. doi: 10.1016/j.theriogenology.2010.11.033. Epub 2011 Jan 17. PMID: 21247620.
18: Barceló-Fimbres M, Seidel GE Jr. Cross-validation of techniques for measuring lipid content of bovine oocytes and blastocysts. Theriogenology. 2011 Feb;75(3):434-44. doi: 10.1016/j.theriogenology.2010.09.007. Epub 2010 Nov 26. PMID: 21111465.
19: Stevens ER, Gustafson EC, Sullivan SJ, Esguerra M, Miller RF. Light-evoked NMDA receptor-mediated currents are reduced by blocking D-serine synthesis in the salamander retina. Neuroreport. 2010 Mar 10;21(4):239-44. doi: 10.1097/WNR.0b013e32833313b7. PMID: 20101193; PMCID: PMC2909446.
20: Gajda B. Factors and methods of pig oocyte and embryo quality improvement and their application in reproductive biotechnology. Reprod Biol. 2009 Jul;9(2):97-112. PMID: 19734950.