MedKoo Cat#: 464554 | Name: Phenazine ethosulfate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Phenazine ethosulfate is a cationic dye and a chemical electron acceptor. It is used in dye-linked enzyme assays. At a high pH, the dye produces free radicals, which may be the actual electron acceptors.

Chemical Structure

Phenazine ethosulfate
Phenazine ethosulfate
CAS#10510-77-7

Theoretical Analysis

MedKoo Cat#: 464554

Name: Phenazine ethosulfate

CAS#: 10510-77-7

Chemical Formula: C16H18N2O4S

Exact Mass: 334.0987

Molecular Weight: 334.39

Elemental Analysis: C, 57.47; H, 5.43; N, 8.38; O, 19.14; S, 9.59

Price and Availability

Size Price Availability Quantity
1g USD 260.00 2 Weeks
5g USD 570.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Phenazine ethosulfate; NSC 402863; NSC402863; NSC-402863;
IUPAC/Chemical Name
5-ethylphenazin-5-ium ethyl sulfate
InChi Key
VDJKJPMLWJWQIH-UHFFFAOYSA-M
InChi Code
InChI=1S/C14H13N2.C2H6O4S/c1-2-16-13-9-5-3-7-11(13)15-12-8-4-6-10-14(12)16;1-2-6-7(3,4)5/h3-10H,2H2,1H3;2H2,1H3,(H,3,4,5)/q+1;/p-1
SMILES Code
CCOS(=O)([O-])=O.CC[n+](c(cccc1)c1n2)c3c2cccc3
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Phenazine ethosulfate is a cationic dye (Ex=390 nm, Em=530 nm) and an electron acceptor that can be used in dye-linked enzyme assays.
In vitro activity:
Thirty-seven novel chalcone-phenazine hybrid molecules (C1∼C13 and F1∼F24) with 1,2,3-triazole or ethyl group as linkers were designed and synthesized in this study. C4 was verified to induce ferroptosis in U87-MG cells by transcription, lipid peroxidation, lipid ROS assays. Furthermore, C4 was up-regulated LC3-II, degradated FTH1, and then increasing iron resulted in the down-regulation of NCOA4. Reference: Chem Biodivers. 2023 Feb;20(2):e202201117. https://pubmed.ncbi.nlm.nih.gov/36536551/
In vivo activity:
Notably, treatment with PCA (phenazine-1-carboxylic acid) gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA. Reference: Front Microbiol. 2017 Feb 27;8:289. https://pubmed.ncbi.nlm.nih.gov/28289406/
Solvent mg/mL mM comments
Solubility
EtOH 50.0 149.00
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 334.39 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Zhang C, Ding Q, Xia Z, Wang H, Jiang F, Lu Y. Novel Chalcone-Phenazine Hybrids Induced Ferroptosis in U87-MG Cells through Activating Ferritinophagy. Chem Biodivers. 2023 Feb;20(2):e202201117. doi: 10.1002/cbdv.202201117. Epub 2023 Jan 10. PMID: 36536551. 2. Salin NH, Hariono M, Khalili NSD, Zakaria II, Saqallah FG, Mohamad Taib MNA, Kamarulzaman EE, Wahab HA, Khawory MH. Computational study of nitro-benzylidene phenazine as dengue virus-2 NS2B-NS3 protease inhibitor. Front Mol Biosci. 2022 Nov 17;9:875424. doi: 10.3389/fmolb.2022.875424. PMID: 36465554; PMCID: PMC9715268. 3. Zhang L, Tian X, Kuang S, Liu G, Zhang C, Sun C. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model. Front Microbiol. 2017 Feb 27;8:289. doi: 10.3389/fmicb.2017.00289. PMID: 28289406; PMCID: PMC5326748. 4. Lavaggi ML, Cabrera M, Pintos C, Arredondo C, Pachón G, Rodríguez J, Raymondo S, Pacheco JP, Cascante M, Olea-Azar C, López de Ceráin A, Monge A, Cerecetto H, González M. Novel Phenazine 5,10-Dioxides Release OH in Simulated Hypoxia and Induce Reduction of Tumour Volume In Vivo. ISRN Pharmacol. 2011;2011:314209. doi: 10.5402/2011/314209. Epub 2011 Jun 22. PMID: 22084710; PMCID: PMC3196961.
In vitro protocol:
1. Zhang C, Ding Q, Xia Z, Wang H, Jiang F, Lu Y. Novel Chalcone-Phenazine Hybrids Induced Ferroptosis in U87-MG Cells through Activating Ferritinophagy. Chem Biodivers. 2023 Feb;20(2):e202201117. doi: 10.1002/cbdv.202201117. Epub 2023 Jan 10. PMID: 36536551. 2. Salin NH, Hariono M, Khalili NSD, Zakaria II, Saqallah FG, Mohamad Taib MNA, Kamarulzaman EE, Wahab HA, Khawory MH. Computational study of nitro-benzylidene phenazine as dengue virus-2 NS2B-NS3 protease inhibitor. Front Mol Biosci. 2022 Nov 17;9:875424. doi: 10.3389/fmolb.2022.875424. PMID: 36465554; PMCID: PMC9715268.
In vivo protocol:
1. Zhang L, Tian X, Kuang S, Liu G, Zhang C, Sun C. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model. Front Microbiol. 2017 Feb 27;8:289. doi: 10.3389/fmicb.2017.00289. PMID: 28289406; PMCID: PMC5326748. 2. Lavaggi ML, Cabrera M, Pintos C, Arredondo C, Pachón G, Rodríguez J, Raymondo S, Pacheco JP, Cascante M, Olea-Azar C, López de Ceráin A, Monge A, Cerecetto H, González M. Novel Phenazine 5,10-Dioxides Release OH in Simulated Hypoxia and Induce Reduction of Tumour Volume In Vivo. ISRN Pharmacol. 2011;2011:314209. doi: 10.5402/2011/314209. Epub 2011 Jun 22. PMID: 22084710; PMCID: PMC3196961.
1: Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD+ Regeneration in Mediated NAD+-Dependent Bioelectrocatalysis. ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10942-10951. doi: 10.1021/acsami.0c22302. Epub 2021 Mar 1. PMID: 33646753. 2: Hatada M, Saito S, Yonehara S, Tsugawa W, Asano R, Ikebukuro K, Sode K. Development of glycated peptide enzyme sensor based flow injection analysis system for haemoglobin A1c monitoring using quasi-direct electron transfer type engineered fructosyl peptide oxidase. Biosens Bioelectron. 2021 Apr 1;177:112984. doi: 10.1016/j.bios.2021.112984. Epub 2021 Jan 8. PMID: 33477030. 3: Jahn B, Jonasson NSW, Hu H, Singer H, Pol A, Good NM, den Camp HJMO, Martinez-Gomez NC, Daumann LJ. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster's Blue in methanol dehydrogenase assays. J Biol Inorg Chem. 2020 Mar;25(2):199-212. doi: 10.1007/s00775-020-01752-9. Epub 2020 Feb 14. PMID: 32060650; PMCID: PMC7082304. 4: Suzuki N, Lee J, Loew N, Takahashi-Inose Y, Okuda-Shimazaki J, Kojima K, Mori K, Tsugawa W, Sode K. Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator. Int J Mol Sci. 2020 Feb 8;21(3):1137. doi: 10.3390/ijms21031137. PMID: 32046321; PMCID: PMC7036908. 5: Hiraka K, Kojima K, Tsugawa W, Asano R, Ikebukuro K, Sode K. Rational engineering of Aerococcus viridansl-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. Biosens Bioelectron. 2020 Mar 1;151:111974. doi: 10.1016/j.bios.2019.111974. Epub 2019 Dec 18. PMID: 31999581. 6: Kalimuthu P, Daumann LJ, Pol A, Op den Camp HJM, Bernhardt PV. Electrocatalysis of a Europium-Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron-Acceptor Cytochrome cGJ. Chemistry. 2019 Jul 2;25(37):8760-8768. doi: 10.1002/chem.201900525. Epub 2019 May 20. PMID: 30908783. 7: Hatada M, Loew N, Inose-Takahashi Y, Okuda-Shimazaki J, Tsugawa W, Mulchandani A, Sode K. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Bioelectrochemistry. 2018 Jun;121:185-190. doi: 10.1016/j.bioelechem.2018.02.001. Epub 2018 Feb 9. PMID: 29471242. 8: Baker JL, Faustoferri RC, Quivey RG Jr. A Modified Chromogenic Assay for Determination of the Ratio of Free Intracellular NAD+/NADH in Streptococcus mutans. Bio Protoc. 2016 Aug 20;6(16):e1902. doi: 10.21769/BioProtoc.1902. PMID: 28516115; PMCID: PMC5431588. 9: Okamoto A, Tanaka M, Sumi C, Oku K, Kusunoki M, Nishi K, Matsuo Y, Takenaga K, Shingu K, Hirota K. The antioxidant N-acetyl cysteine suppresses lidocaine- induced intracellular reactive oxygen species production and cell death in neuronal SH-SY5Y cells. BMC Anesthesiol. 2016 Oct 24;16(1):104. doi: 10.1186/s12871-016-0273-3. PMID: 27776485; PMCID: PMC5078905. 10: Al-Attar S, de Vries S. An electrogenic nitric oxide reductase. FEBS Lett. 2015 Jul 22;589(16):2050-7. doi: 10.1016/j.febslet.2015.06.033. Epub 2015 Jul 3. PMID: 26149211. 11: Leow D. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes. Org Lett. 2014 Nov 7;16(21):5812-5. doi: 10.1021/ol5029354. Epub 2014 Oct 28. PMID: 25350690. 12: Ghanem N, Ha AN, Fakruzzaman M, Bang JI, Lee SC, Kong IK. Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism. Theriogenology. 2014 Jul 15;82(2):238-50. doi: 10.1016/j.theriogenology.2014.03.024. Epub 2014 Apr 4. PMID: 24786394. 13: Johnson JL, Gonzalez de Mejia E. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol. 2013 Oct;60:83-91. doi: 10.1016/j.fct.2013.07.036. Epub 2013 Jul 18. PMID: 23871783. 14: Stenuit B, Lamblin G, Cornelis P, Agathos SN. Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides. Environ Sci Technol. 2012 Oct 2;46(19):10605-13. doi: 10.1021/es302046h. Epub 2012 Sep 10. PMID: 22881832. 15: Gajda B, Romek M, Grad I, Krzysztofowicz E, Bryla M, Smorag Z. Lipid content and cryotolerance of porcine embryos cultured with phenazine ethosulfate. Cryo Letters. 2011 Jul-Aug;32(4):349-57. PMID: 22020414. 16: Romek M, Gajda B, Krzysztofowicz E, Kepczyński M, Smorag Z. Lipid content in pig blastocysts cultured in the presence or absence of protein and vitamin E or phenazine ethosulfate. Folia Biol (Krakow). 2011;59(1-2):45-52. PMID: 21614967. 17: Sudano MJ, Paschoal DM, Rascado Tda S, Magalhães LC, Crocomo LF, de Lima- Neto JF, Landim-Alvarenga Fda C. Lipid content and apoptosis of in vitro- produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology. 2011 Apr 15;75(7):1211-20. doi: 10.1016/j.theriogenology.2010.11.033. Epub 2011 Jan 17. PMID: 21247620. 18: Barceló-Fimbres M, Seidel GE Jr. Cross-validation of techniques for measuring lipid content of bovine oocytes and blastocysts. Theriogenology. 2011 Feb;75(3):434-44. doi: 10.1016/j.theriogenology.2010.09.007. Epub 2010 Nov 26. PMID: 21111465. 19: Stevens ER, Gustafson EC, Sullivan SJ, Esguerra M, Miller RF. Light-evoked NMDA receptor-mediated currents are reduced by blocking D-serine synthesis in the salamander retina. Neuroreport. 2010 Mar 10;21(4):239-44. doi: 10.1097/WNR.0b013e32833313b7. PMID: 20101193; PMCID: PMC2909446. 20: Gajda B. Factors and methods of pig oocyte and embryo quality improvement and their application in reproductive biotechnology. Reprod Biol. 2009 Jul;9(2):97-112. PMID: 19734950.