MedKoo Cat#: 464445 | Name: Sodium aristolate 1
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Sodium aristolate 1 is a component of some Chinese herbal medicines, and responsible for their nephrotoxicity. It is a prodrug activated by reduction of the nitro group to an amine, which forms cytotoxic DNA adducts.

Chemical Structure

Sodium aristolate 1
Sodium aristolate 1
CAS#10190-99-5

Theoretical Analysis

MedKoo Cat#: 464445

Name: Sodium aristolate 1

CAS#: 10190-99-5

Chemical Formula: C17H10NNaO7

Exact Mass: 0.0000

Molecular Weight: 363.26

Elemental Analysis: C, 56.21; H, 2.77; N, 3.86; Na, 6.33; O, 30.83

Price and Availability

Size Price Availability Quantity
50mg USD 450.00 2 Weeks
250mg USD 1,250.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Sodium aristolate 1; Aristolochic acid; Aristolochic acid 1; Aristolochic acid 1 sodium salt;
IUPAC/Chemical Name
sodium 8-methoxy-6-nitrophenanthro[3,4-d][1,3]dioxole-5-carboxylate
InChi Key
BQVOPWJSBBMGBR-UHFFFAOYSA-M
InChi Code
InChI=1S/C17H11NO7.Na/c1-23-12-4-2-3-8-9(12)5-11(18(21)22)14-10(17(19)20)6-13-16(15(8)14)25-7-24-13;/h2-6H,7H2,1H3,(H,19,20);/q;+1/p-1
SMILES Code
O=C(C1=C2C([N+]([O-])=O)=CC3=C(OC)C=CC=C3C2=C(OCO4)C4=C1)[O-].[Na+]
Appearance
Solid powder
Purity
>97% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Sodium aristolate 1is a proagent and is responsible for nephrotoxicity.
In vitro activity:
To be determined
In vivo activity:
To be determined
Solvent mg/mL mM comments
Solubility
Water 50.0 137.64
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 363.26 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
To be determined
In vitro protocol:
To be determined
In vivo protocol:
To be determined
1: Wang L, Man S, Bian Y. Bioinformatics analysis of biomarkers of aristolochic acid-induced early nephrotoxicity in embryonic stem cells. Exp Ther Med. 2021 May;21(5):508. doi: 10.3892/etm.2021.9939. Epub 2021 Mar 18. PMID: 33791017; PMCID: PMC8005694. 2: Lin J, Cao Y, Yang X, Li G, Shi Y, Wang D, Long J, Song Y, Mao J, Xie F, Bai Y, Zhang L, Yang X, Wan X, Wang A, Guan M, Zhao L, Hu K, Pan J, Huo L, Lu X, Mao Y, Sang X, Zhang H, Wang K, Wang X, Zhao H. Mutational spectrum and precision oncology for biliary tract carcinoma. Theranostics. 2021 Mar 4;11(10):4585-4598. doi: 10.7150/thno.56539. PMID: 33754015; PMCID: PMC7978308. 3: Bauer B, Liedtke D, Jarzina S, Stammler E, Kreisel K, Lalomia V, Diefenbacher M, Klopocki E, Mally A. Exploration of zebrafish larvae as an alternative whole- animal model for nephrotoxicity testing. Toxicol Lett. 2021 Mar 17;344:69-81. doi: 10.1016/j.toxlet.2021.03.005. Epub ahead of print. PMID: 33722575. 4: Liu YZ, Lu HL, Qi XM, Xing GZ, Wang X, Yu P, Liu L, Yang FF, Ding XL, Zhang ZA, Deng ZP, Gong LK, Ren J. Aristolochic acid I promoted clonal expansion but did not induce hepatocellular carcinoma in adult rats. Acta Pharmacol Sin. 2021 Mar 8. doi: 10.1038/s41401-021-00622-7. Epub ahead of print. PMID: 33686245. 5: Yang F, Ozols E, Ma FY, Leong KG, Tesch GH, Jiang X, Nikolic-Paterson DJ. c-Jun Amino Terminal Kinase Signaling Promotes Aristolochic Acid-Induced Acute Kidney Injury. Front Physiol. 2021 Feb 12;12:599114. doi: 10.3389/fphys.2021.599114. PMID: 33643061; PMCID: PMC7907440. 6: Lin CE, Lin PY, Yang WC, Huang YS, Lin TY, Chen CM, Chen HS, Lee JA, Chen SM. Evaluation of the nephrotoxicity and safety of low-dose aristolochic acid, extending to the use of Xixin (Asurum), by determination of methylglyoxal and d-lactate. J Ethnopharmacol. 2021 May 23;272:113945. doi: 10.1016/j.jep.2021.113945. Epub 2021 Feb 19. PMID: 33617966. 7: Cao L, Liu H, Xie W, Jiao S, Wu X, Yuan K, Zhou X, Yang M, Guan Y, Cai H, Lai Z, Chen J, Zhou H. Real-time monitoring of aristolochic acid I reduction process using surface-enhanced Raman Spectroscopy with DFT simulation. Biosens Bioelectron. 2021 May 1;179:113061. doi: 10.1016/j.bios.2021.113061. Epub 2021 Feb 11. PMID: 33609952. 8: Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, Tan HL, Tang XL, Wang YG, Ma ZC, Gao Y. Mitochondrial Iron Overload- Mediated Inhibition of Nrf2-HO-1/GPX4 Assisted ALI-Induced Nephrotoxicity. Front Pharmacol. 2021 Jan 21;11:624529. doi: 10.3389/fphar.2020.624529. PMID: 33584308; PMCID: PMC7873870. 9: Hu J, Qiao J, Yu Q, Liu B, Zhen J, Liu Y, Ma Q, Li Y, Wang Q, Wang C, Lv Z. Role of SIK1 in the transition of acute kidney injury into chronic kidney disease. J Transl Med. 2021 Feb 15;19(1):69. doi: 10.1186/s12967-021-02717-5. PMID: 33588892; PMCID: PMC7885408. 10: Stoyanov GS, Kobakova I, Petkova L, Dzhenkov DL, Popov H. Balkan Endemic Nephropathy: An Autopsy Case Report. Cureus. 2021 Jan 1;13(1):e12415. doi: 10.7759/cureus.12415. PMID: 33542864; PMCID: PMC7847780. 11: Cheng S, Zhong W, Xia K, Hong P, Lin R, Wang B, Li X, Chen J, Liu Z, Zhang H, Liu C, Ye L, Ma L, Lin T, Li X, Huang J, Zhou L. Prognostic role of stromal tumor-infiltrating lymphocytes in locally advanced upper tract urothelial carcinoma: A retrospective multicenter study (TSU-02 study). Oncoimmunology. 2021 Jan 4;10(1):1861737. doi: 10.1080/2162402X.2020.1861737. PMID: 33489471; PMCID: PMC7801121. 12: Guo CR, Ying YM, Yu M, Xiong Y, Liu XG, Zhao Z. Nitrogen-Rich Tetraphenylethene-Based Luminescent Metal-Organic Framework for Efficient Detection of Carcinogens. ACS Omega. 2021 Jan 12;6(3):2177-2183. doi: 10.1021/acsomega.0c05457. PMID: 33521457; PMCID: PMC7841942. 13: Ishii T, Kumagae T, Wakui H, Urate S, Tanaka S, Abe E, Suzuki T, Yamaji T, Kinguchi S, Kobayashi R, Haruhara K, Nakamura T, Kobayashi S, Tamura K. Tissue xanthine oxidoreductase activity in a mouse model of aristolochic acid nephropathy. FEBS Open Bio. 2021 Feb;11(2):507-518. doi: 10.1002/2211-5463.13083. Epub 2021 Feb 1. PMID: 33448693; PMCID: PMC7876505. 14: Boissier R, Thuret R, Prudhomme T, Verhoest G, Bessede T, Branchereau J, Goujon A, Drouin S, Boutin JM, Neuzillet Y, Roupret M, Méjean A, Timsit MO. Recommandations françaises du Comité de transplantation de l’association française d’urologie (CTAFU) : carcinome urothélial chez le patient transplanté rénal et le candidat à la transplantation rénale [Urothelial carcinoma in kidney transplant recipients and candidates: The French guidelines from CTAFU]. Prog Urol. 2021 Jan;31(1):31-38. French. doi: 10.1016/j.purol.2020.04.028. PMID: 33423744. 15: Chan CK, Chan KJ, Liu N, Chan W. Quantitation of Protein Adducts of Aristolochic Acid I by Liquid Chromatography-Tandem Mass Spectrometry: A Novel Method for Biomonitoring Aristolochic Acid Exposure. Chem Res Toxicol. 2021 Jan 18;34(1):144-153. doi: 10.1021/acs.chemrestox.0c00454. Epub 2021 Jan 7. PMID: 33410325. 16: Ji HJ, Li JY, Wu SF, Wu WY, Yao CL, Yao S, Zhang JQ, Guo DA. Two New Aristolochic Acid Analogues from the Roots of Aristolochiacontorta with Significant Cytotoxic Activity. Molecules. 2020 Dec 23;26(1):44. doi: 10.3390/molecules26010044. PMID: 33374869; PMCID: PMC7795626. 17: Chen R, You X, Cao Y, Masumura K, Ando T, Hamada S, Horibata K, Wan J, Xi J, Zhang X, Honma M, Luan Y. Benchmark dose analysis of multiple genotoxicity endpoints in gpt delta mice exposed to aristolochic acid I. Mutagenesis. 2020 Dec 26:geaa034. doi: 10.1093/mutage/geaa034. Epub ahead of print. PMID: 33367723. 18: Lu PH, Lee HY, Liou YL, Tung SF, Kuo KL, Chen YH. Nephroprotective Role of Zhibai Dihuang Wan in Aristolochic Acid-Intoxicated Zebrafish. Biomed Res Int. 2020 Dec 2;2020:5204348. doi: 10.1155/2020/5204348. PMID: 33344639; PMCID: PMC7725560. 19: Chen C, Shi X, Zhou T, Li W, Li S, Bai G. Full-length transcriptome analysis and identification of genes involved in asarinin and aristolochic acid biosynthesis in medicinal plant Asarum sieboldii. Genome. 2020 Dec 15. doi: 10.1139/gen-2020-0095. Epub ahead of print. PMID: 33320770. 20: Feng W, Ying WZ, Li X, Curtis LM, Sanders PW. Renoprotective effect of Stat1 deletion in murine aristolochic acid nephropathy. Am J Physiol Renal Physiol. 2021 Jan 1;320(1):F87-F96. doi: 10.1152/ajprenal.00401.2020. Epub 2020 Dec 7. PMID: 33283645; PMCID: PMC7847048.