MedKoo Cat#: 464358 | Name: SM-102
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

SM-102 is a cationic lipid used primarily as a component in lipid nanoparticle (LNP) formulations for mRNA delivery, including in the Moderna COVID-19 vaccine. It facilitates the encapsulation and cellular uptake of mRNA by promoting endosomal escape and membrane fusion. In preclinical studies, SM-102-based LNPs demonstrated efficient delivery of mRNA to target cells, with high protein expression in vivo. For example, SM-102 LNPs delivered mRNA encoding luciferase in mice with robust expression observed within hours post-injection and sustained for over 48 hours. In cytotoxicity assays, SM-102 showed relatively low toxicity at concentrations below 50 µg/mL in human cell lines. Its physicochemical properties, including a tertiary amine headgroup and biodegradable ester-linked lipid tails, contribute to its effectiveness and biodegradability in vivo.

Chemical Structure

SM-102
SM-102
CAS#2089251-47-6

Theoretical Analysis

MedKoo Cat#: 464358

Name: SM-102

CAS#: 2089251-47-6

Chemical Formula: C44H87NO5

Exact Mass: 709.6584

Molecular Weight: 710.18

Elemental Analysis: C, 74.42; H, 12.35; N, 1.97; O, 11.26

Price and Availability

Size Price Availability Quantity
10mg USD 90.00 Ready to ship
25mg USD 150.00 Ready to ship
50mg USD 250.00 Ready to ship
100mg USD 450.00 Ready to ship
200mg USD 650.00 Ready to ship
500mg USD 1,350.00 Ready to Ship
1g USD 2,150.00 Ready to Ship
2g USD 3,850.00 Ready to Ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
SM-102; SM102; SM 102;
IUPAC/Chemical Name
heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate
InChi Key
BGNVBNJYBVCBJH-UHFFFAOYSA-N
InChi Code
InChI=1S/C44H87NO5/c1-4-7-10-13-16-17-18-24-32-41-49-43(47)35-29-25-31-38-45(39-40-46)37-30-23-19-22-28-36-44(48)50-42(33-26-20-14-11-8-5-2)34-27-21-15-12-9-6-3/h42,46H,4-41H2,1-3H3
SMILES Code
OCCN(CCCCCC(OCCCCCCCCCCC)=O)CCCCCCCC(OC(CCCCCCCC)CCCCCCCC)=O
Appearance
Oily liquid
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Biological target:
SM-102 is an ionizable cationic amino lipid that has been used in combination with other lipids to form lipid nanoparticles (LNPs).
In vitro activity:
SM-102 may influence cellular activities by inhibiting specific ionic currents. In endocrine cells (GH3 and MA-10) and microglial cells (BV2), SM-102 concentration-dependently blocked hyperpolarization-activated K+ currents, impacting their functional activities. The IC50 for SM-102 inhibition of GH3 cells was 108 μM, similar to its KD value of 134 μM for deactivation time constant accentuation. Reference: Biomedicines. 2021 Oct 1;9(10):1367. https://pubmed.ncbi.nlm.nih.gov/34680484/
In vivo activity:
SM-102-based CRISPR LNPs show promise as a therapeutic strategy against hepatitis B virus (HBV) infection. CRISPR nanoparticle treatment decreased the levels of HBcAg, HBsAg and cccDNA in AAV-HBV1.04 transduced mouse liver by 53%, 73% and 64% respectively. In HBV infected tree shrews, the treatment achieved 70% reduction of viral RNA and 35% reduction of cccDNA. In HBV transgenic mouse, 90% inhibition of HBV RNA and 95% inhibition of DNA were observed. Reference: Antiviral Res. 2023 Jul;215:105618. https://pubmed.ncbi.nlm.nih.gov/37142191/
Solvent mg/mL mM
Solubility
Chloroform 100.0 140.80
DMSO 100.0 140.80
Ethanol 100.0 140.80
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 710.18 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
⚗️ General SM-102 LNP Formulation Protocol (for research use) 1. Materials Needed SM-102 (cationic lipid) Cholesterol DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) PEG-lipid (e.g., DMG-PEG2000) mRNA (in aqueous buffer, e.g., 10 mM citrate, pH 4.0) Ethanol (USP grade) Citrate buffer (10 mM, pH 4.0) Phosphate-buffered saline (PBS), pH 7.4 2. Lipid Composition (molar ratio) Typical molar ratio (based on Moderna-like LNPs): SM-102: 50 mol% Cholesterol: 38.5 mol% DSPC: 10 mol% PEG-lipid: 1.5 mol% 3. Prepare Lipid Solution Dissolve all lipids in ethanol to a total lipid concentration of 10–20 mM. Example for 10 mM total lipid: SM-102: 5 mM Cholesterol: 3.85 mM DSPC: 1 mM PEG-lipid: 0.15 mM 4. Prepare Aqueous mRNA Solution Dissolve or dilute mRNA in 10 mM citrate buffer (pH 4.0). Final mRNA concentration depends on application, typically 0.1–1.0 mg/mL. 5. Mixing (via microfluidic or manual ethanol injection) Microfluidic mixing (preferred for uniformity): Mix ethanol (lipid solution) and aqueous mRNA at a 1:3 ratio (v/v). Flow rate ratio (FRR) of 1:3 (ethanol:aqueous) with total flow rate (TFR) ~12 mL/min. Manual method (for pilot testing): Slowly add lipid/ethanol solution dropwise into vigorously stirred mRNA/citrate buffer at 1:3 ratio while maintaining temperature at 20–25°C. 6. Dialysis / Buffer Exchange Remove ethanol and adjust pH: Dialyze or use tangential flow filtration (TFF) against PBS (pH 7.4). Aim for final ethanol content <1%. 7. Sterile Filtration Filter the final LNP suspension through 0.22 μm sterile filter for cell or animal use. 8. Characterization (recommended) Measure particle size and PDI by DLS: target ~80–120 nm, PDI < 0.2. Measure zeta potential. Quantify RNA encapsulation efficiency (e.g., RiboGreen assay). Notes: Always work under RNase-free conditions. LNPs should be used fresh or stored at 4°C for short-term use. For long-term, freeze at −80°C with cryoprotectants (e.g., 5% sucrose or trehalose).
In vitro protocol:
⚗️ Step 1: Prepare Lipid Nanoparticles (LNPs) Lipid molar ratio (Moderna-style, 50:38.5:10:1.5) SM-102: 50 mol% Cholesterol: 38.5 mol% DSPC: 10 mol% DMG-PEG2000: 1.5 mol% Lipid solution: Dissolve lipids in ethanol at total lipid concentration = 10 mM Aqueous mRNA solution: Dissolve mRNA in 10 mM citrate buffer (pH 4.0) at 0.1–1.0 mg/mL LNP formation (manual mixing or microfluidic): Mix ethanol lipid solution with aqueous mRNA at 1:3 volume ratio (ethanol:aqueous) Stir or vortex gently Final ethanol concentration will be ~25% 🔁 Step 2: Buffer Exchange Dialyze or ultrafiltrate LNP solution into PBS or Opti-MEM (pH 7.4) Use Amicon filters (MWCO 100 kDa) or dialysis (10 kDa tubing) Goal: remove ethanol and adjust pH 📦 Step 3: Characterize LNPs (optional) Measure particle size (expect ~80–120 nm) and PDI < 0.2 Check RNA encapsulation efficiency using RiboGreen assay 🧫 Step 4: In Vitro Transfection Cell seeding: Seed adherent cells (e.g., HEK293T) in 24-well plates at ~70% confluency For HEK293T: ~5 × 10⁴ cells/well the day before LNP dosing: Add LNPs to fresh medium (serum-free or complete) and apply to cells Dose range: 0.1–1.0 μg mRNA per well (in 24-well) Example: 10 μL of LNP suspension delivering 0.5 μg mRNA in 500 μL medium Incubation: Incubate 4–6 hours at 37°C Then replace with complete medium (with serum) ⏱ Step 5: Assays (after 24–48 hours) Reporter assay (e.g., luciferase, GFP fluorescence) qRT-PCR or Western blot for target expression Cell viability (MTT, CellTiter-Glo) to assess toxicity 📌 Notes Use RNase-free and endotoxin-free conditions throughout Optimal dose and time vary by cell line and mRNA species SM-102 LNPs are less cytotoxic than PEI or Lipofectamine at equivalent doses
In vivo protocol:
Below is a detailed in vivo protocol for using SM-102-based lipid nanoparticles (LNPs) to deliver mRNA (or other nucleic acids) in animal models — typically mice — for research use only. This protocol is based on published studies and established preclinical practices (e.g., as used in mRNA vaccine delivery research). 🐁 In Vivo Protocol for SM-102 LNPs (Research Use) ✅ Objective Deliver mRNA payloads via SM-102 LNPs to induce systemic or organ-specific protein expression in mice. 🧴 Materials & Reagents SM-102, Cholesterol, DSPC, DMG-PEG2000 (PEG-lipid) In vitro transcribed (IVT) mRNA (e.g., luciferase, eGFP, therapeutic) Ethanol (USP grade) 10 mM Citrate Buffer, pH 4.0 PBS (pH 7.4) Sterile 0.22 μm filters Ultrafiltration device or dialysis tubing (10–100 kDa cutoff) Mouse model (e.g., C57BL/6, BALB/c) Injection supplies: insulin syringes (e.g., 29G), restraint devices ⚗️ Step 1: Prepare LNPs Lipid molar ratio (Moderna-style): SM-102: 50 mol% Cholesterol: 38.5 mol% DSPC: 10 mol% DMG-PEG2000: 1.5 mol% Procedure: Dissolve lipids in ethanol to total lipid concentration of 10 mM. Dissolve mRNA in 10 mM citrate buffer (pH 4.0) at 0.1–1.0 mg/mL. Mix lipids and mRNA aqueous phase using: Microfluidic mixing (1:3 ethanol:aqueous phase, total flow rate ~12 mL/min), or Manual mixing: dropwise ethanol lipid addition into aqueous mRNA with vigorous stirring. 🌀 Step 2: Buffer Exchange & Sterile Filtration Exchange buffer to PBS, pH 7.4, using dialysis or ultrafiltration. Sterile-filter LNPs through a 0.22 μm PES filter. Store at 4°C for up to 1 week, or aliquot and freeze at –80°C with 5% sucrose or trehalose. 📊 Step 3: Characterization (recommended) Size and PDI by DLS: aim for 80–100 nm, PDI < 0.2. Encapsulation efficiency via RiboGreen assay. mRNA concentration via UV or fluorescence quantification. 🐁 Step 4: In Vivo Dosing Animals: Male or female C57BL/6 or BALB/c mice, 6–10 weeks old Acclimatize for 5–7 days before injection Injection routes: IV (tail vein): for systemic delivery (e.g., liver targeting) IM (hind leg muscle): for vaccine-type response SC (flank): for slow uptake depot Typical dosing: Route Volume mRNA dose IV 100–150 µL 0.1–1.0 mg/kg IM 30–50 µL 1–10 µg total SC 50–100 µL 1–10 µg total Dilute LNPs in sterile PBS before injection Use insulin syringes (29G) for precise delivery ⏱ Step 5: Sample Collection For luciferase: image 4–6 h post-injection using IVIS For GFP/protein expression: harvest tissues 6–72 h post-dose For immune response studies: bleed animals (e.g., retro-orbital or submandibular) days 7–28 For biodistribution: collect organs (liver, spleen, lung, kidney) 🧪 Assays Post-Injection RT-qPCR to quantify mRNA or target gene Western blot / ELISA for protein Flow cytometry / histology for cellular uptake IVIS imaging for luciferase reporters ALT/AST for liver toxicity ⚠️ Safety and Handling Notes SM-102 is for research use only — not for human or veterinary use. Follow institutional animal care protocols (IACUC). Dispose of LNP waste according to biosafety level 1 or 2 rules depending on payload.
1: Wu S, Su K, Yan X, Shi L, Lin L, Ren E, Zhou J, Zhang C, Song Y, Liu S. Paracyclophane-based ionizable lipids for efficient mRNA delivery in vivo. J Control Release. 2024 Oct 20;376:395-401. doi: 10.1016/j.jconrel.2024.10.028. Epub ahead of print. PMID: 39424104. 2: Couture-Senécal J, Natraj J, Khan OF. A Cell-Free Kinetic Analysis of Ionizable Lipid Hydrolysis. Anal Chem. 2024 Oct 18. doi: 10.1021/acs.analchem.4c02399. Epub ahead of print. PMID: 39422560. 3: Lv K, Yu Z, Wang J, Li N, Wang A, Xue T, Wang Q, Shi Y, Han L, Qin W, Gong J, Song H, Zhang T, Chang C, Chen H, Zhong X, Ding J, Chen R, Liu M, Zhang W, Cen S, Dong Y. Discovery of Ketal-Ester Ionizable Lipid Nanoparticle with Reduced Hepatotoxicity, Enhanced Spleen Tropism for mRNA Vaccine Delivery. Adv Sci (Weinh). 2024 Oct 10:e2404684. doi: 10.1002/advs.202404684. Epub ahead of print. PMID: 39387241. 4: Zhang Z, Cheng D, Luo W, Hu D, Yang T, Hu K, Liang L, Liu W, Hu J. Molecular Dynamics Simulation of Lipid Nanoparticles Encapsulating mRNA. Molecules. 2024 Sep 17;29(18):4409. doi: 10.3390/molecules29184409. PMID: 39339404; PMCID: PMC11433737. 5: Tamming L, Duque D, Tran A, Lansdell C, Frahm G, Wu J, Fekete EEF, Creskey M, Thulasi Raman SN, Laryea E, Zhang W, Pfeifle A, Gravel C, Stalker A, Hashem AM, Chen W, Stuible M, Durocher Y, Safronetz D, Cao J, Wang L, Sauve S, Rosu-Myles M, Zhang X, Johnston MJW, Li X. Lipid nanoparticle encapsulation of a Delta spike-CD40L DNA vaccine improves effectiveness against Omicron challenge in Syrian hamsters. Mol Ther Methods Clin Dev. 2024 Aug 19;32(3):101325. doi: 10.1016/j.omtm.2024.101325. PMID: 39309757; PMCID: PMC11416279. 6: Lotter C, Kuzucu EÜ, Casper J, Alter CL, Puligilla RD, Detampel P, Lopez JS, Ham AS, Huwyler J. Comparison of ionizable lipids for lipid nanoparticle mediated DNA delivery. Eur J Pharm Sci. 2024 Sep 10;203:106898. doi: 10.1016/j.ejps.2024.106898. Epub ahead of print. PMID: 39260517. 7: Atwood G, Purbiya S, Reid C, Smith B, Kaur K, Wicks D, Gaudet P, MacLeod KC, Vincent-Rocan JF. Fatty aldehyde bisulfite adducts as a purification handle in ionizable lipid synthesis. RSC Adv. 2024 Aug 19;14(36):26233-26238. doi: 10.1039/d4ra05189k. PMID: 39161429; PMCID: PMC11332587. 8: Liu J, Xiao B, Yang Y, Jiang Y, Wang R, Wei Q, Pan Y, Chen Y, Wang H, Fan J, Li R, Xu H, Piao Y, Xiang J, Shao S, Zhou Z, Shen Y, Sun W, Tang J. Low-Dose Mildronate-Derived Lipidoids for Efficient mRNA Vaccine Delivery with Minimal Inflammation Side Effects. ACS Nano. 2024 Aug 27;18(34):23289-23300. doi: 10.1021/acsnano.4c06160. Epub 2024 Aug 16. PMID: 39151414. 9: Li D, Bian L, Cui L, Zhou J, Li G, Zhao X, Xing L, Cui J, Sun B, Jiang C, Kong W, Zhang Y, Chen Y. Heterologous Prime-Boost Immunization Strategies Using Varicella-Zoster Virus gE mRNA Vaccine and Adjuvanted Protein Subunit Vaccine Triggered Superior Cell Immune Response in Middle-Aged Mice. Int J Nanomedicine. 2024 Aug 6;19:8029-8042. doi: 10.2147/IJN.S464720. PMID: 39130684; PMCID: PMC11316494. 10: Li M, Liu L, Li X, Li J, Zhao C, Zhao Y, Zhang X, He P, Wu X, Jiang S, Wang X, Zhang X, Wei L. Lipid Nanoparticles Outperform Electroporation in Delivering Therapeutic HPV DNA Vaccines. Vaccines (Basel). 2024 Jun 17;12(6):666. doi: 10.3390/vaccines12060666. PMID: 38932395; PMCID: PMC11209142. 11: Reitemeier J, Metro J, Bohn PW. Detection of aldehydes from degradation of lipid nanoparticle formulations using a hierarchically-organized nanopore electrochemical biosensor. Biosens Bioelectron. 2024 Oct 1;261:116457. doi: 10.1016/j.bios.2024.116457. Epub 2024 Jun 1. PMID: 38850733. 12: Nelson AL, Mancino C, Gao X, Choe JA, Chubb L, Williams K, Czachor M, Marcucio R, Taraballi F, Cooke JP, Huard J, Bahney C, Ehrhart N. β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioact Mater. 2024 May 23;39:273-286. doi: 10.1016/j.bioactmat.2024.05.020. PMID: 38832305; PMCID: PMC11145078. 13: Qian R, Ullah A, Cui J, Cai X, Cao J, Wu L, Shen S. Synthesis of novel cholesterol-based ionizable lipids for mRNA delivery. Colloids Surf B Biointerfaces. 2024 Aug;240:113980. doi: 10.1016/j.colsurfb.2024.113980. Epub 2024 May 19. PMID: 38781845. 14: Chen Q, Wang X, Zhang Y, Tian M, Duan J, Zhang Y, Yin H. Minimizing the ratio of ionizable lipid in lipid nanoparticles for in vivo base editing. Natl Sci Rev. 2024 Apr 3;11(6):nwae135. doi: 10.1093/nsr/nwae135. PMID: 38770531; PMCID: PMC11104531. 15: Bender V, Fuchs L, Süss R. RP-HPLC-CAD method for the rapid analysis of lipids used in lipid nanoparticles derived from dual centrifugation. Int J Pharm X. 2024 May 4;7:100255. doi: 10.1016/j.ijpx.2024.100255. PMID: 38766478; PMCID: PMC11101883. 16: Zeng G, He Z, Yang H, Gao Z, Ge X, Liu L, Liu Z, Chen Y. Cationic Lipid Pairs Enhance Liver-to-Lung Tropism of Lipid Nanoparticles for In Vivo mRNA Delivery. ACS Appl Mater Interfaces. 2024 May 22;16(20):25698-25709. doi: 10.1021/acsami.4c02415. Epub 2024 May 8. PMID: 38717294. 17: Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release. 2024 Jun;370:379-391. doi: 10.1016/j.jconrel.2024.04.052. Epub 2024 May 4. PMID: 38697317. 18: Liu Y, Suzuoki M, Tanaka H, Sakurai Y, Hatakeyama H, Akita H. Lymphatic Endothelial Cells Produce Chemokines in Response to the Lipid Nanoparticles Used in RNA Vaccines. Biol Pharm Bull. 2024;47(3):698-707. doi: 10.1248/bpb.b23-00689. PMID: 38538323. 19: Kang DD, Hou X, Wang L, Xue Y, Li H, Zhong Y, Wang S, Deng B, McComb DW, Dong Y. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact Mater. 2024 Mar 16;37:86-93. doi: 10.1016/j.bioactmat.2024.03.017. PMID: 38523704; PMCID: PMC10957522. 20: Yu H, Dyett B, Kirby N, Cai X, Mohamad ME, Bozinovski S, Drummond CJ, Zhai J. pH-Dependent Lyotropic Liquid Crystalline Mesophase and Ionization Behavior of Phytantriol-Based Ionizable Lipid Nanoparticles. Small. 2024 May;20(20):e2309200. doi: 10.1002/smll.202309200. Epub 2024 Jan 31. PMID: 38295089.
1. Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, Li H, Wang S, Wang C, Yan J, Kang DD, Deng B, McComb DW, Irvine DJ, Weiss R, Dong Y. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun. 2024 Jan 25;15(1):739. doi: 10.1038/s41467-024-45094-5. PMID: 38272900; PMCID: PMC10811230. 2. Zhang W, Pfeifle A, Lansdell C, Frahm G, Cecillon J, Tamming L, Gravel C, Gao J, Thulasi Raman SN, Wang L, Sauve S, Rosu-Myles M, Li X, Johnston MJW. The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice. Vaccines (Basel). 2023 Oct 11;11(10):1580. doi: 10.3390/vaccines11101580. PMID: 37896985; PMCID: PMC10610642. 3. Im, S.H., Jang, M., Park, JH. et al. Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing. J Nanobiotechnol 22, 175 (2024). https://doi.org/10.1186/s12951-024-02427-2. 4. Im SH, Chung Y, Duskunovic N, Choi H, Park SH, Chung HJ. Oligonucleotide-Linked Lipid Nanoparticles as a Versatile mRNA Nanovaccine Platform. Adv Healthc Mater. 2024 Oct 3:e2401868. doi: 10.1002/adhm.202401868. Epub ahead of print. PMID: 39363681 5. Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses. 2024 Jul 18;16(7):1156. doi: 10.3390/v16071156. PMID: 39066318; PMCID: PMC11281610. 6. Xue Y, Hou X, Zhong Y, Zhang Y, Du S, Kang DD, Wang L, Wang C, Li H, Wang S, Liu Z, Tian M, Guo K, Cao D, Deng B, McComb DW, Purisic E, Dai J, Hamon P, Brown BD, Tsankova NM, Merad M, Irvine DJ, Weiss R, Dong Y. LNP-RNA-mediated antigen presentation leverages SARS-CoV-2-specific immunity for cancer treatment. Nat Commun. 2025 Mar 4;16(1):2198. doi: 10.1038/s41467-025-57149-2. PMID: 40038251; PMCID: PMC11880362. 7. Tamming L, Duque D, Bavananthasivam J, Tran A, Lansdell C, Frahm G, Wu J, Fekete EEF, Creskey M, Thulasi Raman SN, Laryea E, Zhang W, Pfeifle A, Gravel C, Stalker A, Hashem AM, Chen W, Stuible M, Durocher Y, Safronetz D, Cao J, Wang L, Sauve S, Rosu-Myles M, Zhang X, Johnston MJW, Li X. Lipid nanoparticle encapsulation of a Delta spike-CD40L DNA vaccine improves effectiveness against Omicron challenge in Syrian hamsters. Mol Ther Methods Clin Dev. 2024 Aug 19;32(3):101325. doi: 10.1016/j.omtm.2024.101325. Erratum in: Mol Ther Methods Clin Dev. 2024 Dec 11;33(1):101388. doi: 10.1016/j.omtm.2024.101388. PMID: 39309757; PMCID: PMC11416279.