MedKoo Cat#: 464325 | Name: HEPES
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

HEPES is a zwitterionic sulfonic acid buffering agent; one of the twenty Good's buffers. HEPES is widely used in cell culture, largely because it is better at maintaining physiological pH despite changes in carbon dioxide concentration (produced by aerobic respiration) when compared to bicarbonate buffers, which are also commonly used in cell culture.

Chemical Structure

HEPES
HEPES
CAS#7365-45-9

Theoretical Analysis

MedKoo Cat#: 464325

Name: HEPES

CAS#: 7365-45-9

Chemical Formula: C8H18N2O4S

Exact Mass: 238.0987

Molecular Weight: 238.30

Elemental Analysis: C, 40.32; H, 7.61; N, 11.76; O, 26.85; S, 13.45

Price and Availability

Size Price Availability Quantity
5g USD 250.00 2 Weeks
25g USD 450.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
HEPES; NSC 166663; NSC166663; NSC-166663;
IUPAC/Chemical Name
2-(4-(2-hydroxyethyl)piperazin-1-yl)ethane-1-sulfonic acid
InChi Key
JKMHFZQWWAIEOD-UHFFFAOYSA-N
InChi Code
InChI=1S/C8H18N2O4S/c11-7-5-9-1-3-10(4-2-9)6-8-15(12,13)14/h11H,1-8H2,(H,12,13,14)
SMILES Code
OCCN1CCN(CC1)CCS(=O)(O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
HEPES, a nonvolatile zwitterionic chemical buffering agent, is broadly applied in cell culture. HEPES is effective at pH 6.8 to 8.2. HEPES is also a potent inducer of lysosome biogenesis.
In vitro activity:
HEPES-buffered medium markedly influences processing of GCase, its lysosomal degradation, and the total cellular enzyme level. HEPES-containing medium was also found to reduce maturation of other lysosomal enzymes (α-glucosidase and β-glucuronidase) in cells. The presence of HEPES in bicarbonate containing medium increases GCase activity in GD-patient derived fibroblasts, illustrating how the supplementation of HEPES complicates the use of cultured cells for diagnosing GD. Reference: J Cell Biochem. 2022 May;123(5):893-905. https://pubmed.ncbi.nlm.nih.gov/35312102/
In vivo activity:
Among stored groups, improved pH regulation (by adding HEPES) and increased metabolism (by adding pyruvate) appeared to correlate with cellular survival. Lungs stored in Perfadex with bicarbonate buffer alone had significantly greater cell death than all other groups. Improved buffer capacity (Perfadex/HEPES Group) or the addition of pyruvate (Pyruvate Group) improved lung preservation to a similar degree compared to Perfadex alone (p<.05). The least cell death among stored lungs was encountered when allografts were stored in pyruvate and HEPES supplemented preservation solution. Reference: Transplant Proc. 2010 Sep;42(7):2771-6. https://pubmed.ncbi.nlm.nih.gov/20832585/
Solvent mg/mL mM
Solubility
Water 178.8 750.17
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 238.30 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Wang X, Wang Y, Yin L, Zhang Q, Wang S. Surfactant-free synthesis of fluorescent platinum nanoclusters using HEPES buffer for hypochlorous acid sensing and imaging. RSC Adv. 2022 Apr 4;12(17):10395-10400. doi: 10.1039/d1ra09064j. PMID: 35424968; PMCID: PMC8978884. 2. van der Lienden MJC, Aten J, Boot RG, van Eijk M, Aerts JMFG, Kuo CL. HEPES-buffering of bicarbonate-containing culture medium perturbs lysosomal glucocerebrosidase activity. J Cell Biochem. 2022 May;123(5):893-905. doi: 10.1002/jcb.30234. Epub 2022 Mar 21. PMID: 35312102; PMCID: PMC9314694. 3. Peltz M, Milchgrub S, Jessen ME, Meyer DM. Effect of pyruvate and HEPES on rat lung allograft acidosis and cell death after long-term hypothermic storage. Transplant Proc. 2010 Sep;42(7):2771-6. doi: 10.1016/j.transproceed.2010.06.004. PMID: 20832585; PMCID: PMC2954414. 4. Desaphy JF, Joffre M. Inhibitory effect of internal sodium and Hepes on the voltage-dependent potassium conductance of rat Leydig cells. Biochim Biophys Acta. 1996 Nov 13;1285(1):9-13. doi: 10.1016/s0005-2736(96)00133-2. PMID: 8948469.
In vitro protocol:
1. Wang X, Wang Y, Yin L, Zhang Q, Wang S. Surfactant-free synthesis of fluorescent platinum nanoclusters using HEPES buffer for hypochlorous acid sensing and imaging. RSC Adv. 2022 Apr 4;12(17):10395-10400. doi: 10.1039/d1ra09064j. PMID: 35424968; PMCID: PMC8978884. 2. van der Lienden MJC, Aten J, Boot RG, van Eijk M, Aerts JMFG, Kuo CL. HEPES-buffering of bicarbonate-containing culture medium perturbs lysosomal glucocerebrosidase activity. J Cell Biochem. 2022 May;123(5):893-905. doi: 10.1002/jcb.30234. Epub 2022 Mar 21. PMID: 35312102; PMCID: PMC9314694.
In vivo protocol:
1. Peltz M, Milchgrub S, Jessen ME, Meyer DM. Effect of pyruvate and HEPES on rat lung allograft acidosis and cell death after long-term hypothermic storage. Transplant Proc. 2010 Sep;42(7):2771-6. doi: 10.1016/j.transproceed.2010.06.004. PMID: 20832585; PMCID: PMC2954414. 2. Desaphy JF, Joffre M. Inhibitory effect of internal sodium and Hepes on the voltage-dependent potassium conductance of rat Leydig cells. Biochim Biophys Acta. 1996 Nov 13;1285(1):9-13. doi: 10.1016/s0005-2736(96)00133-2. PMID: 8948469.
1: Bocanegra-Jiménez FY, Montero-Morán GM, Lara-González S. Purification and characterization of an FeII- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus oryzae. Protein Expr Purif. 2021 Mar 11:105862. doi: 10.1016/j.pep.2021.105862. Epub ahead of print. PMID: 33716123. 2: Aydin D, Alici MK. Phenolphthalein Conjugated Schiff Base as a Dual Emissive Fluorogenic Probe for the Recognition Aluminum (III) and Zinc (II) Ions. J Fluoresc. 2021 Mar 12. doi: 10.1007/s10895-021-02704-5. Epub ahead of print. PMID: 33713010. 3: Migliari S, Sammartano A, Scarlattei M, Baldari G, Janota B, Bonadonna RC, Ruffini L. Feasibility of a scale-down production of [68Ga]Ga-NODAGA-Exendin-4 in a hospital based radiopharmacy. Curr Radiopharm. 2021 Mar 9. doi: 10.2174/1874471014666210309151930. Epub ahead of print. PMID: 33687908. 4: Senik MH, Abu IF, Fadhullah W. Analysis of KATP Channels Opening Probability of Hippocampus Cells Treated with Kainic Acid. Malays J Med Sci. 2021 Feb;28(1):15-26. doi: 10.21315/mjms2021.28.1.3. Epub 2021 Feb 24. PMID: 33679216; PMCID: PMC7909348. 5: Brudar S, Hribar-Lee B. Effect of Buffer on Protein Stability in Aqueous Solutions: A Simple Protein Aggregation Model. J Phys Chem B. 2021 Mar 18;125(10):2504-2512. doi: 10.1021/acs.jpcb.0c10339. Epub 2021 Mar 3. PMID: 33656887. 6: Zheng HW, Kang Y, Wu M, Liang QF, Zheng JQ, Zheng XJ, Jin LP. ESIPT-AIE active Schiff base based on 2-(2'-hydroxyphenyl)benzo-thiazole applied as multi- functional fluorescent chemosensors. Dalton Trans. 2021 Feb 26. doi: 10.1039/d1dt00241d. Epub ahead of print. PMID: 33635301. 7: Ghosh P, Rozenberg I, Maayan G. Sequence-function relationship within water- soluble Peptoid Chelators for Cu2. J Inorg Biochem. 2021 Apr;217:111388. doi: 10.1016/j.jinorgbio.2021.111388. Epub 2021 Feb 12. PMID: 33618230. 8: Campos V, Pitassi L, Kalil C, Gonçalves Júnior JE, Sant'Anna B, Correia P. Clinical evaluation of the efficacy of a facial serum containing dioic acid, glycolic acid, salicylic acid, LHA, citric acid, and HEPES in treating post- inflammatory hyperchromia and controlling oily skin in patients with acne vulgaris. J Cosmet Dermatol. 2021 Feb 22. doi: 10.1111/jocd.14016. Epub ahead of print. PMID: 33617668. 9: Wang X, Li T, Ma C. A novel ICT-based chemosensor for F- and its application in real samples and bioimaging. J Hazard Mater. 2021 Feb 10;413:125384. doi: 10.1016/j.jhazmat.2021.125384. Epub ahead of print. PMID: 33607583. 10: Das M, Mukherjee S, Brandao P, Seth SK, Giri S, Mati SS, Samanta BC, Laha S, Maity T. Active Bromoaniline-Aldehyde Conjugate Systems and Their Complexes as Versatile Sensors of Multiple Cations with Logic Formulation and Efficient DNA/HSA-Binding Efficacy: Combined Experimental and Theoretical Approach. ACS Omega. 2021 Jan 25;6(5):3659-3674. doi: 10.1021/acsomega.0c05189. PMID: 33585746; PMCID: PMC7876678. 11: Shebindu A, Somaweera H, Estlack Z, Kim J, Kim J. A fully integrated isotachophoresis with a programmable microfluidic platform. Talanta. 2021 Apr 1;225:122039. doi: 10.1016/j.talanta.2020.122039. Epub 2020 Dec 30. PMID: 33592763. 12: Kravchenko O, Sutherland TC, Heyne B. Photobleaching of Erythrosine B in Aqueous Environment Investigation Beyond pH†. Photochem Photobiol. 2021 Feb 9. doi: 10.1111/php.13396. Epub ahead of print. PMID: 33565140. 13: Arib C, Spadavecchia J, de la Chapelle ML. Enzyme mediated synthesis of hybrid polyedric gold nanoparticles. Sci Rep. 2021 Feb 5;11(1):3208. doi: 10.1038/s41598-021-81751-1. PMID: 33547353; PMCID: PMC7864913. 14: Leitner S, Solans C, García-Celma MJ, Morral-Ruíz G, Melgar-Lesmes P, Calderó G. Ethylcellulose nanoparticles prepared from nano-emulsion templates as new folate binding haemocompatible platforms. Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111682. doi: 10.1016/j.msec.2020.111682. Epub 2020 Oct 27. PMID: 33545844. 15: Chauhan N, Singh Y. L-histidine controls the hydroxyapatite mineralization with plate-like morphology: Effect of concentration and media. Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111669. doi: 10.1016/j.msec.2020.111669. Epub 2020 Oct 22. PMID: 33545834. 16: Sammartano A, Migliari S, Scarlattei M, Baldari G, Ruffini L. Synthesis, validation and quality controls of [68Ga]-DOTA-Pentixafor for PET imaging of chemokine receptor CXCR4 expression. Acta Biomed. 2020 Jul 6;91(4):e2020097. doi: 10.23750/abm.v91i4.9106. PMID: 33525262; PMCID: PMC7927511. 17: Sari LM, Zampini R, Gonzalez Del Pino F, Argañaraz ME, Ratto MH, Apichela SA. Effects of NGF Addition on Llama (Lama glama) Sperm Traits After Cooling. Front Vet Sci. 2021 Jan 5;7:610597. doi: 10.3389/fvets.2020.610597. PMID: 33479599; PMCID: PMC7814774. 18: Wu M, Yang DD, Zheng HW, Liang QF, Li JB, Kang Y, Li S, Jiao C, Zheng XJ, Jin LP. A multi-binding site hydrazone-based chemosensor for Zn(ii) and Cd(ii): a new strategy for the detection of metal ions in aqueous media based on aggregation-induced emission. Dalton Trans. 2021 Feb 7;50(4):1507-1513. doi: 10.1039/d0dt04062b. Epub 2021 Jan 14. PMID: 33443271. 19: Alqahtani AS, Li KM, Razmovski-Naumovski V, Kam A, Alam P, Li GQ. Attenuation of methylglyoxal-induced glycation and cellular dysfunction in wound healing by Centella cordifolia. Saudi J Biol Sci. 2021 Jan;28(1):813-824. doi: 10.1016/j.sjbs.2020.11.016. Epub 2020 Nov 11. PMID: 33424371; PMCID: PMC7783792. 20: Singh P. Molecular switches and dual channel detection of Cd2+ and Fe3+ ions based on a multipodand system. Luminescence. 2021 Jan 2. doi: 10.1002/bio.4005. Epub ahead of print. PMID: 33386700.