MedKoo Cat#: 206147 | Name: Omaveloxolone
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Omaveloxolone, also known as RTA-408, is a member of the synthetic oleanane triterpenoid class of compounds and an activator of nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2, Nfe2l2), with potential chemopreventive activity. Upon administration, RTA 408 activates the cytoprotective transcription factor Nrf2. In turn, Nrf2 translocates to the nucleus, dimerizes with a small Maf protein (sMaf), and binds to the antioxidant response element (ARE). This induces the expression of a number of cytoprotective genes, including NAD(P)H quinone oxidoreductase 1 (NQO1), sulfiredoxin 1 (Srxn1), heme oxygenase-1 (HO1, HMOX1), superoxide dismutase 1 (SOD1), gamma-glutamylcysteine synthetase (gamma-GCS), thioredoxin reductase-1 (TXNRD1), glutathione S-transferase (GST), glutamate-cysteine ligase catalytic subunit (Gclc) and glutamate-cysteine ligase regulatory subunit (Gclm), and increases the synthesis of the antioxidant glutathione (GSH).

Chemical Structure

Omaveloxolone
Omaveloxolone
CAS#1474034-05-3

Theoretical Analysis

MedKoo Cat#: 206147

Name: Omaveloxolone

CAS#: 1474034-05-3

Chemical Formula: C33H44F2N2O3

Exact Mass: 554.3320

Molecular Weight: 554.71

Elemental Analysis: C, 71.45; H, 8.00; F, 6.85; N, 5.05; O, 8.65

Price and Availability

Size Price Availability Quantity
10mg USD 150.00 Ready to ship
25mg USD 250.00 Ready to ship
50mg USD 450.00 Ready to ship
100mg USD 750.00 Ready to ship
200mg USD 1,250.00 Ready to ship
500mg USD 2,650.00 Ready to ship
1g USD 3,850.00 Ready to ship
2g USD 6,550.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
RTA408; RTA408; RTA-408; Omaveloxolone
IUPAC/Chemical Name
N-((4aR,6aR,6bS,12aS,14aR,14bR)-11-cyano-2,2,6a,6b,9,9,12a-heptamethyl-10,14-dioxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,12a,14,14a,14b-octadecahydropicen-4a-yl)-2,2-difluoropropanamide
InChi Key
RJCWBNBKOKFWNY-HGNIWHNWSA-N
InChi Code
InChI=1S/C33H44F2N2O3/c1-27(2)11-13-33(37-26(40)32(8,34)35)14-12-31(7)24(20(33)17-27)21(38)15-23-29(5)16-19(18-36)25(39)28(3,4)22(29)9-10-30(23,31)6/h15-16,20,22,24H,9-14,17H2,1-8H3,(H,37,40)/t20-,22?,24+,29+,30-,31-,33-/m1/s1
SMILES Code
CC(F)(F)C(N[C@]1(CCC(C)(C[C@@]1([C@]23[H])[H])C)CC[C@@]2(C)[C@]4(C)CCC5C(C)(C)C(C(C#N)=C[C@]5(C)C4=CC3=O)=O)=O
Appearance
White solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
        
Biological target:
Omaveloxolone (RTA 408) is an antioxidant inflammation modulator (AIM), which activates Nrf2 and suppresses nitric oxide (NO).
In vitro activity:
RTA-408 activated Nrf2 expression during RANKL-induced osteoclastogenesis (Fig. 1A). To explore the effect of this compound on RANKL-induced osteoclast differentiation, this study treated BMMs with RANKL and M-CSF in the presence of RTA-408 at various concentrations (0, 5, 10, and 20 nM). RTA-408 significantly inhibited osteoclast differentiation in a dose-dependent manner as indicated by TRAP staining (Fig. 1C). TRAP-positive cells with more than three nuclei were considered osteoclasts. The number of osteoclasts decreased from approximately 233/well (no RTA-408) to 21/well (20 nM RTA-408). Further, osteoclasts with more than eight nuclei were scarcely observed upon treatment with 20 nM RTA-408 (Fig. 1D). Reference: Redox Biol. 2020 Jan; 28: 101309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728880/
In vivo activity:
RTA‐408 pretreatment significantly reduced propofol‐induced apoptosis of hippocampus neurons of mice (p < .05, Figure 6a,b). Besides, expression of Caspase‐3 was tested in the CA1 area of hippocampus via immunohistochemistry, which showed Caspase‐3 expression was increased significantly in other three groups compared with intralipid group, but when compared to vehicle + propofol group, its expression was decreased significantly in RTA‐408 + propofol group (all p < .05, Figure 6c,d). Moreover, the activities of GPx, SOD, and CAT in the hippocampus of mice from propofol group and vehicle + propofol group were lower than those from intralipid group, while RTA‐408 can significantly improve propofol‐induced oxidative stress in hippocampus (all p < .05, Figure 6e–g). Reference: Brain Behav. 2021 Jan; 11(1): e01918. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821557/
Solvent mg/mL mM
Solubility
DMSO 35.0 63.10
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 554.71 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol. 2020 Jan;28:101309. doi: 10.1016/j.redox.2019.101309. Epub 2019 Aug 27. PMID: 31487581; PMCID: PMC6728880. 2. Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, Wu H. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol. 2016 Aug;8:98-109. doi: 10.1016/j.redox.2015.12.005. Epub 2015 Dec 19. PMID: 26773873; PMCID: PMC4731949. 3. Zhang L, Zhou Q, Zhou CL. RTA-408 protects against propofol-induced cognitive impairment in neonatal mice via the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation. Brain Behav. 2021 Jan;11(1):e01918. doi: 10.1002/brb3.1918. Epub 2020 Dec 9. PMID: 33295701; PMCID: PMC7821557. 4. Tsai TH, Lin SH, Wu CH, Tsai YC, Yang SF, Lin CL. Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS One. 2020 Oct 5;15(10):e0240122. doi: 10.1371/journal.pone.0240122. PMID: 33017422; PMCID: PMC7535038.
In vitro protocol:
1. Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol. 2020 Jan;28:101309. doi: 10.1016/j.redox.2019.101309. Epub 2019 Aug 27. PMID: 31487581; PMCID: PMC6728880. 2. Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, Wu H. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol. 2016 Aug;8:98-109. doi: 10.1016/j.redox.2015.12.005. Epub 2015 Dec 19. PMID: 26773873; PMCID: PMC4731949.
In vivo protocol:
1. Zhang L, Zhou Q, Zhou CL. RTA-408 protects against propofol-induced cognitive impairment in neonatal mice via the activation of Nrf2 and the inhibition of NF-κB p65 nuclear translocation. Brain Behav. 2021 Jan;11(1):e01918. doi: 10.1002/brb3.1918. Epub 2020 Dec 9. PMID: 33295701; PMCID: PMC7821557. 2. Tsai TH, Lin SH, Wu CH, Tsai YC, Yang SF, Lin CL. Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS One. 2020 Oct 5;15(10):e0240122. doi: 10.1371/journal.pone.0240122. PMID: 33017422; PMCID: PMC7535038.
1: Scott V, Delatycki MB, Tai G, Corben LA. New and Emerging Drug and Gene Therapies for Friedreich Ataxia. CNS Drugs. 2024 Aug 8. doi: 10.1007/s40263-024-01113-z. Epub ahead of print. PMID: 39115603. 2: Liu Z, Jia J. Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice. Mol Neurobiol. 2024 Aug 1. doi: 10.1007/s12035-024-04361-8. Epub ahead of print. PMID: 39088030. 3: Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother. 2024 Sep;24(9):897-912. doi: 10.1080/14737175.2024.2376840. Epub 2024 Jul 9. PMID: 38980086. 4: Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel). 2024 May 26;13(6):649. doi: 10.3390/antiox13060649. PMID: 38929088; PMCID: PMC11200942. 5: Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells. 2024 Jun 15;13(12):1040. doi: 10.3390/cells13121040. PMID: 38920668; PMCID: PMC11202134. 6: Da Conceição LMA, Cabral LM, Pereira GRC, De Mesquita JF. An In Silico Analysis of Genetic Variants and Structural Modeling of the Human Frataxin Protein in Friedreich's Ataxia. Int J Mol Sci. 2024 May 26;25(11):5796. doi: 10.3390/ijms25115796. PMID: 38891993; PMCID: PMC11172458. 7: Hynes SM, Goldsberry A, Henneghan PD, Murai M, Shinde A, Wells JA, Wu L, Wu T, Zahir H, Khan S. Relative Bioavailability of Omaveloxolone When Capsules Are Sprinkled Over and Mixed in Applesauce Compared With Administration as Intact Omaveloxolone Capsules: A Phase 1, Randomized, Open-Label, Single-Dose, Crossover Study in Healthy Adults. J Clin Pharmacol. 2024 Jun 4. doi: 10.1002/jcph.2482. Epub ahead of print. PMID: 38837775. 8: Wan C, Liang C, Peng H. Omaveloxolone ameliorates glucocorticoid-induced osteonecrosis of the femoral head by promoting osteogenesis and angiogenesis. Biochem Biophys Res Commun. 2024 Sep 3;723:150188. doi: 10.1016/j.bbrc.2024.150188. Epub 2024 May 31. PMID: 38824808. 9: Vancheri C, Quatrana A, Morini E, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Testi R, Novelli G, Malisan F, Amati F. An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease. Hum Genomics. 2024 May 22;18(1):50. doi: 10.1186/s40246-024-00602-y. PMID: 38778374; PMCID: PMC11110315. 10: Li B, Tan S, Yu X, Wang Y. Omaveloxolone Prevents Polystyrene Microplastic- Induced Ovarian Granulosa Cell Apoptosis via the Keap1/Nrf2/HO-1 Pathway in Rats. Mol Biotechnol. 2024 May 22. doi: 10.1007/s12033-024-01196-5. Epub ahead of print. PMID: 38775936. 11: Gunther K, Lynch DR. Pharmacotherapeutic strategies for Friedreich Ataxia: a review of the available data. Expert Opin Pharmacother. 2024 Apr;25(5):529-539. doi: 10.1080/14656566.2024.2343782. Epub 2024 Apr 18. PMID: 38622054. 12: Boesch S, Indelicato E. Approval of omaveloxolone for Friedreich ataxia. Nat Rev Neurol. 2024 Jun;20(6):313-314. doi: 10.1038/s41582-024-00957-9. PMID: 38570703. 13: Rummey C, Perlman S, Subramony SH, Farmer J, Lynch DR. Evaluating mFARS in pediatric Friedreich's ataxia: Insights from the FACHILD study. Ann Clin Transl Neurol. 2024 May;11(5):1290-1300. doi: 10.1002/acn3.52057. Epub 2024 Mar 31. PMID: 38556905; PMCID: PMC11093230. 14: Lynch DR, Subramony S, Lin KY, Mathews K, Perlman S, Yoon G, Rummey C. Characterization of Cardiac-Onset Initial Presentation in Friedreich Ataxia. Pediatr Cardiol. 2024 Mar 1. doi: 10.1007/s00246-024-03429-5. Epub ahead of print. PMID: 38427090. 15: Haid S, Matthaei A, Winkler M, Sake SM, Gunesch AP, Milke V, Köhler NM, Rückert J, Vieyres G, Kühl D, Nguyen T-T, Göhl M, Lasswitz L, Zapatero-Belinchón FJ, Brogden G, Gerold G, Wiegmann B, Bilitewski U, Brown RJP, Brönstrup M, Schulz TF, Pietschmann T. Repurposing screen identifies novel candidates for broad-spectrum coronavirus antivirals and druggable host targets. Antimicrob Agents Chemother. 2024 Mar 6;68(3):e0121023. doi: 10.1128/aac.01210-23. Epub 2024 Feb 6. PMID: 38319076; PMCID: PMC10916382. 16: Pilotto F, Chellapandi DM, Puccio H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol Med. 2024 Feb;30(2):117-125. doi: 10.1016/j.molmed.2023.12.002. Epub 2024 Jan 24. PMID: 38272714. 17: Lynch DR, Perlman S, Schadt K. Omaveloxolone for the treatment of Friedreich ataxia: clinical trial results and practical considerations. Expert Rev Neurother. 2024 Mar;24(3):251-258. doi: 10.1080/14737175.2024.2310617. Epub 2024 Jan 30. PMID: 38269532. 18: Li X, Wu Y, Yang Y, Wu Y, Yu X, Hu W. Omaveloxolone ameliorates isoproterenol-induced pathological cardiac hypertrophy in mice. Free Radic Res. 2024 Jan;58(1):57-68. doi: 10.1080/10715762.2023.2299359. Epub 2024 Feb 7. PMID: 38145457. 19: Hao J, Zhou J, Hu S, Zhang P, Wu H, Yang J, Zhao B, Liu H, Lin H, Chi J, Lou D. RTA 408 ameliorates diabetic cardiomyopathy by activating Nrf2 to regulate mitochondrial fission and fusion and inhibiting NF-κB-mediated inflammation. Am J Physiol Cell Physiol. 2024 Feb 1;326(2):C331-C347. doi: 10.1152/ajpcell.00467.2023. Epub 2023 Dec 4. PMID: 38047307. 20: Wang J, Cao Y, Lu Y, Zhu H, Zhang J, Che J, Zhuang R, Shao J. Recent progress and applications of small molecule inhibitors of Keap1-Nrf2 axis for neurodegenerative diseases. Eur J Med Chem. 2024 Jan 15;264:115998. doi: 10.1016/j.ejmech.2023.115998. Epub 2023 Nov 29. PMID: 38043492.