MedKoo Cat#: 463158 | Name: Theaflavin-3-gallate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Theaflavin-3-gallate is a polyphenolic flavonoid that has been found in black tea (C. sinensis) and has diverse biological activities. It scavenges singlet oxygen and hydrogen peroxide, as well as superoxide and hydroxide radicals, in cell-free assays. Theaflavin-3-gallate is cytotoxic to, and induces apoptosis in, OVCAR-3 and A2780/CP70 ovarian cancer, but not non-cancerous IOSE 364 ovarian epithelial, cells when used at concentrations of 20 and 40 µM. It reduces oxazolone-induced ear edema and serum and ear levels of TNF-α, IFN-γ, and IL-12 in an oxazolone-sensitized mouse model of delayed-type hypersensitivity when administered at a dose of 50 mg/kg.

Chemical Structure

Theaflavin-3-gallate
Theaflavin-3-gallate
CAS#30462-34-1

Theoretical Analysis

MedKoo Cat#: 463158

Name: Theaflavin-3-gallate

CAS#: 30462-34-1

Chemical Formula: C36H28O16

Exact Mass: 716.1377

Molecular Weight: 716.60

Elemental Analysis: C, 60.34; H, 3.94; O, 35.72

Price and Availability

Size Price Availability Quantity
1mg USD 550.00 2 Weeks
5mg USD 750.00 2 Weeks
10mg USD 950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Theaflavin-3-gallate; TF2A; Theaflavin Monogallate A;
IUPAC/Chemical Name
(2R,3R)-5,7-dihydroxy-2-(3,4,6-trihydroxy-5-oxo-1-((2R,3R)-3,5,7-trihydroxychroman-2-yl)-5H-benzo[7]annulen-8-yl)chroman-3-yl 3,4,5-trihydroxybenzoate
InChi Key
KMJPKUVSXFVQGZ-WQLSNUALSA-N
InChi Code
InChI=1S/C36H28O16/c37-14-5-20(39)18-10-26(45)35(51-27(18)7-14)17-9-25(44)33(48)30-16(17)1-12(2-24(43)32(30)47)34-29(11-19-21(40)6-15(38)8-28(19)50-34)52-36(49)13-3-22(41)31(46)23(42)4-13/h1-9,26,29,34-35,37-42,44-46,48H,10-11H2,(H,43,47)/t26-,29-,34-,35-/m1/s1
SMILES Code
OC1=C2C(C=C(C=C(O)C2=O)[C@@]3([C@H](OC(C4=CC(O)=C(O)C(O)=C4)=O)CC5=C(C=C(C=C5O3)O)O)[H])=C(C=C1O)[C@]6(OC7=CC(O)=CC(O)=C7C[C@H]6O)[H]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 716.60 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Lu CK, Lung J, Shu LH, Liu HT, Wu YH, Lin YS, Yang YH, Wu YH, Wu CY. The Inhibiting Effect of GB-2, (+)-Catechin, Theaflavin, and Theaflavin 3-Gallate on Interaction between ACE2 and SARS-CoV-2 EG.5.1 and HV.1 Variants. Int J Mol Sci. 2024 Aug 31;25(17):9498. doi: 10.3390/ijms25179498. PMID: 39273444; PMCID: PMC11394907. 2: Chen G, Yuan H, Zhang L, Zhang J, Li K, Wang X. Pancreatic lipase immobilization on cellulose filter paper for inhibitors screening and network pharmacology study of anti-obesity mechanism. Talanta. 2024 Dec 1;280:126750. doi: 10.1016/j.talanta.2024.126750. Epub 2024 Aug 23. PMID: 39213890. 3: Guo J, Hu M, Yang M, Cao H, Li H, Zhu J, Li S, Zhang J. Inhibition mechanism of theaflavins on matrix metalloproteinase-2: inhibition kinetics, multispectral analysis, molecular docking and molecular dynamics simulation. Food Funct. 2024 Jul 15;15(14):7452-7467. doi: 10.1039/d4fo01620c. PMID: 38910519. 4: Jian J, An J, Gao Z, Zeng L, Luo W, Ding Y. The enzymatic synthesis of theaflavin-3-gallate oxidation product and its determination. Talanta. 2024 Aug 15;276:126239. doi: 10.1016/j.talanta.2024.126239. Epub 2024 May 11. PMID: 38781912. 5: Feng Q, Liu F, Nie J, Yang Y, Li X, Wang S. The associations between dietary flavonoids intake and risk of depressive symptom in diabetic patients: Data from NHANES 2007-2008, 2009-2010, and 2017-2018. J Affect Disord. 2024 Aug 15;359:226-233. doi: 10.1016/j.jad.2024.05.069. Epub 2024 May 18. PMID: 38768822. 6: Zhang L, Kong H, Chitrakar B, Ban X, Gu Z, Hong Y, Cheng L, Li Z, Li C. The substitution sites of hydroxyl and galloyl groups determine the inhibitory activity of human pancreatic α-amylase in twelve tea polyphenol monomers. Int J Biol Macromol. 2024 Feb;259(Pt 1):129189. doi: 10.1016/j.ijbiomac.2023.129189. Epub 2024 Jan 4. PMID: 38181909. 7: Verma J, Rath PP, Gourinath S, Subbarao N. Identification of potential novel inhibitors against the SARS-CoV-2 spike protein: targeting RBD and ACE2 interaction. J Biomol Struct Dyn. 2025 Feb;43(2):1027-1037. doi: 10.1080/07391102.2023.2291161. Epub 2023 Dec 8. PMID: 38063058. 8: Samarina L, Fedorina J, Kuzmina D, Malyukova L, Manakhova K, Kovalenko T, Matskiv A, Xia E, Tong W, Zhang Z, Ryndin A, Orlov YL, Khlestkina EK. Analysis of Functional Single-Nucleotide Polymorphisms (SNPs) and Leaf Quality in Tea Collection under Nitrogen-Deficient Conditions. Int J Mol Sci. 2023 Sep 26;24(19):14538. doi: 10.3390/ijms241914538. PMID: 37833988; PMCID: PMC10572165. 9: Huang J, Fan Y, Lei Z, Yu Z, Ni D, Chen Y. The inhibitory effect and mechanism of theaflavins on fluoride transport and uptake in HIEC-6 cell model. Food Chem Toxicol. 2023 Aug;178:113939. doi: 10.1016/j.fct.2023.113939. Epub 2023 Jul 9. PMID: 37433353. 10: Shan X, Yu Q, Chen L, Zhang S, Zhu J, Jiang Y, Yuan H, Zhou Q, Li J, Wang Y, Deng Y, Li J. Analyzing the influence of withering degree on the dynamic changes in non-volatile metabolites and sensory quality of Longjing green tea by non- targeted metabolomics. Front Nutr. 2023 Mar 14;10:1104926. doi: 10.3389/fnut.2023.1104926. PMID: 36998915; PMCID: PMC10043258. 11: Liu K, Chen Q, Luo H, Li R, Chen L, Jiang B, Liang Z, Wang T, Ma Y, Zhao M. An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase. Molecules. 2023 Feb 10;28(4):1722. doi: 10.3390/molecules28041722. PMID: 36838710; PMCID: PMC9959171. 12: Adigun TO, Danazumi AU, Umar HI, Na'Allah A, Alabi MA, Joel WO, Aberuagba A, Alejolowo OO, Bamidele JO, Omotayo OS, Medayedupin OA. In silico molecular modeling and simulations of black tea theaflavins revealed theaflavin-3'-gallate as putative liver X receptor-beta agonist. J Biomol Struct Dyn. 2023;41(22):13015-13028. doi: 10.1080/07391102.2023.2175264. Epub 2023 Feb 2. PMID: 36729100. 13: Ma C, Ma B, Wang J, Wang Z, Chen X, Zhou B, Li X. Geographical origin identification of Chinese white teas, and their differences in tastes, chemical compositions and antioxidant activities among three production regions. Food Chem X. 2022 Nov 7;16:100504. doi: 10.1016/j.fochx.2022.100504. PMID: 36519090; PMCID: PMC9743341. 14: Shao C, Deng Z, Liu J, Li Y, Zhang C, Yao S, Zuo H, Shi Y, Yuan S, Qin L, Liu Z, Shen C. Effects of Preharvest Shading on Dynamic Changes in Metabolites, Gene Expression, and Enzyme Activity of Three Tea Types during Processing. J Agric Food Chem. 2022 Nov 16;70(45):14544-14558. doi: 10.1021/acs.jafc.2c05456. Epub 2022 Nov 2. PMID: 36321848. 15: Sima M, Lv C, Qi J, Guo J, Luo R, Deng X, Li Y, Wang T, Yue D, Gao Y. Anti- inflammatory effects of theaflavin-3'-gallate during influenza virus infection through regulating the TLR4/MAPK/p38 pathway. Eur J Pharmacol. 2023 Jan 5;938:175332. doi: 10.1016/j.ejphar.2022.175332. Epub 2022 Oct 17. PMID: 36265612. 16: Mbara KC, Devnarain N, Owira PMO. Potential Role of Polyphenolic Flavonoids as Senotherapeutic Agents in Degenerative Diseases and Geroprotection. Pharmaceut Med. 2022 Dec;36(6):331-352. doi: 10.1007/s40290-022-00444-w. Epub 2022 Sep 13. PMID: 36100824; PMCID: PMC9470070. 17: Chauhan M, Bhardwaj VK, Kumar A, Kumar V, Kumar P, Enayathullah MG, Thomas J, George J, Kumar BK, Purohit R, Kumar A, Kumar S. Theaflavin 3-gallate inhibits the main protease (Mpro) of SARS-CoV-2 and reduces its count in vitro. Sci Rep. 2022 Jul 30;12(1):13146. doi: 10.1038/s41598-022-17558-5. PMID: 35908093; PMCID: PMC9338964. 18: Cai G, Xiao Y, Yang M, Guo Q, Su T, Liu Y, Jiang T, Li C. Long noncoding RNA Gm31629 promotes bone regeneration by maintaining bone marrow mesenchymal stem cells activity. PeerJ. 2022 Jun 9;10:e13475. doi: 10.7717/peerj.13475. PMID: 35702257; PMCID: PMC9188769. 19: Liang S, Wang F, Chen J, Granato D, Li L, Yin JF, Xu YQ. Optimization of a tannase-assisted process for obtaining teas rich in theaflavins from Camelia sinensis leaves. Food Chem X. 2022 Jan 3;13:100203. doi: 10.1016/j.fochx.2022.100203. Erratum in: Food Chem X. 2024 Jan 03;21:101105. doi: 10.1016/j.fochx.2023.101105. PMID: 35499033; PMCID: PMC9039937. 20: Khamverdi Z, Mohamadi Z, Taherkhani A. Molecular Docking and Dynamics Simulation of Natural Phenolic Compounds with GSK-3β: A Putative Target to Combat Mortality in Patients with COVID-19. Recent Adv Inflamm Allergy Drug Discov. 2022;15(1):16-34. doi: 10.2174/1872213X14666210916161447. PMID: 35253634.