MedKoo Cat#: 574120 | Name: Pinosylvin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pinosylvin is a stilbene that activates sirtuin 1 (SIRT1) and induces glucose uptake in skeletal muscle myotubes. Pinosylvin reduces expression of matrix metalloproteinase-2 (MMP-2), MMP-9, and membrane type 1-MMP in and inhibits migration of HT-1080 cells. Pinosylvin reduces the number of tumor nodules and lung tumor weight in a CT26 mouse xenograft model of metastatic colon cancer.

Chemical Structure

Pinosylvin
Pinosylvin
CAS#22139-77-1

Theoretical Analysis

MedKoo Cat#: 574120

Name: Pinosylvin

CAS#: 22139-77-1

Chemical Formula: C14H12O2

Exact Mass: 212.0837

Molecular Weight: 212.25

Elemental Analysis: C, 79.23; H, 5.70; O, 15.08

Price and Availability

Size Price Availability Quantity
1mg USD 370.00
5mg USD 575.00
10mg USD 835.00
25mg USD 1,300.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Pinosylvin, trans-3,5-Dihydroxystilbene
IUPAC/Chemical Name
5-[(1E)-2-phenylethenyl]-1,3-benzenediol
InChi Key
YCVPRTHEGLPYPB-VOTSOKGWSA-N
InChi Code
InChI=1S/C14H12O2/c15-13-8-12(9-14(16)10-13)7-6-11-4-2-1-3-5-11/h1-10,15-16H/b7-6+
SMILES Code
OC1=CC(/C=C/C2=CC=CC=C2)=CC(O)=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Pinosylvin is a stilbene that activates sirtuin 1 (SIRT1) and induces glucose uptake in skeletal muscle myotubes.
In vitro activity:
Cell death was found to be markedly elevated by 50- to 100-μmol/L pinosylvin in THP-1 and U937 cells. It was also shown that pinosylvin induced caspase-3 activation, flip-flop of phosphatidylserine, LC3-II accumulation, LC3 puncta, and p62 degradation in both THP-1 and U937 cells. These data indicate that pinosylvin-induced cell death may occur through apoptosis and autophagy. In addition, we showed that pinosylvin down-regulates AMP-activated protein kinase α1 (AMPKα1) in leukemia cells. Therefore, we correlated AMPKα1 down-regulation and leukemia cell death. Reference: Phytother Res. 2018 Oct;32(10):2097-2104. https://pubmed.ncbi.nlm.nih.gov/30027566/
In vivo activity:
The results seen in vitro on the effect of pinosylvin as a TRPA1 antagonist were also tested in vivo in the AITC-induced acute inflammation. In these experiments, the mice treated with pinosylvin exhibited a significantly attenuated acute oedema in response to AITC (fig. 2A); the effect was comparable to that of the known TRPA1 antagonist TCS 5861528 and resveratrol. Furthermore, the analysis of the inflamed paw tissue indicated that the increased production of the pro-inflammatory cytokine IL-6 was blunted by the treatment with pinosylvin (fig. 2B) and correspondingly with TCS 5861528 or resveratrol. Together, these results on AITC-induced acute paw inflammation revealed the anti-inflammatory potential of pinosylvin in TRPA1-mediated inflammation in vivo. Reference: Basic Clin Pharmacol Toxicol. 2016 Mar;118(3):238-42. https://pubmed.ncbi.nlm.nih.gov/26335783/
Solvent mg/mL mM comments
Solubility
DMF 10.0 47.12
DMF:PBS (pH 7.2) (1:50) 0.0 0.05
DMSO 55.0 259.13
Ethanol 20.0 94.23
Ethanol:PBS (pH 7.2) (1:50) 0.0 0.05
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 212.25 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Song J, Seo Y, Park H. Pinosylvin enhances leukemia cell death via down-regulation of AMPKα expression. Phytother Res. 2018 Oct;32(10):2097-2104. doi: 10.1002/ptr.6156. Epub 2018 Jul 20. PMID: 30027566. 2. Chen MK, Liu YT, Lin JT, Lin CC, Chuang YC, Lo YS, Hsi YT, Hsieh MJ. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed Pharmacother. 2019 Sep;117:109160. doi: 10.1016/j.biopha.2019.109160. Epub 2019 Jul 1. PMID: 31387166. 3. Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM, Muraki K, Moilanen E. Pinosylvin Inhibits TRPA1-Induced Calcium Influx In Vitro and TRPA1-Mediated Acute Paw Inflammation In Vivo. Basic Clin Pharmacol Toxicol. 2016 Mar;118(3):238-42. doi: 10.1111/bcpt.12485. Epub 2015 Oct 7. PMID: 26335783.
In vitro protocol:
1. Song J, Seo Y, Park H. Pinosylvin enhances leukemia cell death via down-regulation of AMPKα expression. Phytother Res. 2018 Oct;32(10):2097-2104. doi: 10.1002/ptr.6156. Epub 2018 Jul 20. PMID: 30027566. 2. Chen MK, Liu YT, Lin JT, Lin CC, Chuang YC, Lo YS, Hsi YT, Hsieh MJ. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed Pharmacother. 2019 Sep;117:109160. doi: 10.1016/j.biopha.2019.109160. Epub 2019 Jul 1. PMID: 31387166.
In vivo protocol:
1. Moilanen LJ, Hämäläinen M, Lehtimäki L, Nieminen RM, Muraki K, Moilanen E. Pinosylvin Inhibits TRPA1-Induced Calcium Influx In Vitro and TRPA1-Mediated Acute Paw Inflammation In Vivo. Basic Clin Pharmacol Toxicol. 2016 Mar;118(3):238-42. doi: 10.1111/bcpt.12485. Epub 2015 Oct 7. PMID: 26335783.
1: Hu C, Zhai Y, Lin H, Lu H, Zheng J, Wen C, Li X, Ge RS, Liu Y, Zhu Q. Resveratrol analogues and metabolites selectively inhibit human and rat 11β-hydroxysteroid dehydrogenase 1 as the therapeutic drugs: structure-activity relationship and molecular dynamics analysis. SAR QSAR Environ Res. 2024 Aug 14:1-23. doi: 10.1080/1062936X.2024.2389817. Epub ahead of print. PMID: 39139138. 2: Zatloukalova M, Hanyk J, Papouskova B, Kabelac M, Vostalova J, Vacek J. Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes. Free Radic Biol Med. 2024 Jul 26;223:212-223. doi: 10.1016/j.freeradbiomed.2024.07.032. Epub ahead of print. PMID: 39067626. 3: Pandey PK, Patra M, Ranjan P, Kumar Pal N, Choudhary S, Bera JK. A Single Terminal [NiII-OH] Catalyst for Direct Julia-Type Olefination and α-Alkylation Involving Sulfones and Alcohols. Chemistry. 2024 Jun 20;30(35):e202400337. doi: 10.1002/chem.202400337. Epub 2024 May 22. PMID: 38644351. 4: Yang H, Song P, Li B, Li S, Yang J. Design, synthesis and biological evaluation of Nrf2 modulators for the treatment of glioblastoma multiforme. Bioorg Med Chem. 2024 Apr 1;103:117684. doi: 10.1016/j.bmc.2024.117684. Epub 2024 Mar 15. PMID: 38493731. 5: Goleij P, Sanaye PM, Babamohamadi M, Tabari MAK, Amirian R, Rezaee A, Mirzaei H, Kumar AP, Sethi G, Sadreddini S, Jeandet P, Khan H. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin. Leuk Res. 2024 Mar;138:107464. doi: 10.1016/j.leukres.2024.107464. Epub 2024 Feb 24. PMID: 38422882. 6: Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel). 2024 Feb 9;17(2):232. doi: 10.3390/ph17020232. PMID: 38399446; PMCID: PMC10891666. 7: Howaili F, Saadabadi A, Mäkilä E, Korotkova E, Eklund PC, Salo-Ahen OMH, Rosenholm JM. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics. 2024 Feb 15;16(2):276. doi: 10.3390/pharmaceutics16020276. PMID: 38399330; PMCID: PMC10892027. 8: Kim YR, Han JY, Choi YE. A Pinus strobus transcription factor PsbHLH1 activates the production of pinosylvin stilbenoids in transgenic Pinus koraiensis calli and tobacco leaves. Front Plant Sci. 2024 Jan 18;15:1342626. doi: 10.3389/fpls.2024.1342626. PMID: 38304739; PMCID: PMC10830828. 9: Simões ASB, Borges MM, Grazina L, Nunes J. Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview. Genes (Basel). 2024 Jan 10;15(1):84. doi: 10.3390/genes15010084. PMID: 38254973; PMCID: PMC10815827. 10: Longevity OMAC. Retracted: Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. Oxid Med Cell Longev. 2024 Jan 9;2024:9835864. doi: 10.1155/2024/9835864. PMID: 38234509; PMCID: PMC10791330. 11: Paixão DB, Soares EGO, Silva CDG, Peglow TJ, Rampon DS, Schneider PH. CS2/KOH System-Promoted Stereoselective Synthesis of (E)-Alkenes from Diarylalkynes and a "Hidden" Zinin-Type Reduction of Nitroarenes into Arylamines. J Org Chem. 2023 Dec 15;88(24):17037-17046. doi: 10.1021/acs.joc.3c01949. Epub 2023 Nov 27. PMID: 38010206. 12: Alperth F, Schneebauer A, Kunert O, Bucar F. Phytochemical Analysis of Pinus cembra Heartwood-UHPLC-DAD-ESI-MSn with Focus on Flavonoids, Stilbenes, Bibenzyls and Improved HPLC Separation. Plants (Basel). 2023 Sep 25;12(19):3388. doi: 10.3390/plants12193388. PMID: 37836128; PMCID: PMC10574252. 13: Aalto AL, Saadabadi A, Lindholm F, Kietz C, Himmelroos E, Marimuthu P, Salo- Ahen OMH, Eklund P, Meinander A. Stilbenoid compounds inhibit NF-κB-mediated inflammatory responses in the Drosophila intestine. Front Immunol. 2023 Sep 22;14:1253805. doi: 10.3389/fimmu.2023.1253805. PMID: 37809071; PMCID: PMC10556681. 14: Paasela T, Lim KJ, Pavicic M, Harju A, Venäläinen M, Paulin L, Auvinen P, Kärkkäinen K, Teeri TH. Transcriptomic Analysis Reveals Novel Regulators of the Scots Pine Stilbene Pathway. Plant Cell Physiol. 2023 Oct 16;64(10):1204-1219. doi: 10.1093/pcp/pcad089. PMID: 37674261; PMCID: PMC10579783. 15: Lee SH, Yang JH, Park UH, Choi H, Kim YS, Yoon BE, Han HJ, Kim HT, Um SJ, Kim EJ. SIRT1 ubiquitination is regulated by opposing activities of APC/C-Cdh1 and AROS during stress-induced premature senescence. Exp Mol Med. 2023 Jun;55(6):1232-1246. doi: 10.1038/s12276-023-01012-1. Epub 2023 Jun 1. PMID: 37258580; PMCID: PMC10318011. 16: Perri MR, Pellegrino M, Marrelli M, Aquaro S, Cavaliere F, Grande F, Occhiuzzi MA, Lupia C, Toma CC, Conforti F, Statti G. Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway. Pharmaceuticals (Basel). 2023 May 9;16(5):718. doi: 10.3390/ph16050718. PMID: 37242501; PMCID: PMC10221723. 17: Su M, Ye L, Tang Y, Wang S, Hu Z, Li H, Wang Y, Li X, Liu Y, Ge RS. Inhibition of Resveratrol Analogs on Human and Rat 3β-Hydroxysteroid Dehydrogenases: Structure-Activity Relationship and Docking Analysis. J Agric Food Chem. 2023 May 17;71(19):7566-7574. doi: 10.1021/acs.jafc.3c01919. Epub 2023 May 2. PMID: 37129992. 18: Schwanemann T, Otto M, Wynands B, Marienhagen J, Wierckx N. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis. Metab Eng. 2023 May;77:219-230. doi: 10.1016/j.ymben.2023.04.001. Epub 2023 Apr 8. PMID: 37031949. 19: Nakayama T, Uno B. Reactivity of trans-Resveratrol toward Electrogenerated Superoxide in N,N-Dimethylformamide. J Agric Food Chem. 2023 Mar 15;71(10):4382-4393. doi: 10.1021/acs.jafc.2c08105. Epub 2023 Feb 28. PMID: 36852964. 20: Naseem A, Rasool F, Ahmed A, Carter WG. The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Curr Issues Mol Biol. 2022 Dec 20;45(1):12-32. doi: 10.3390/cimb45010002. PMID: 36661488; PMCID: PMC9857500.