MedKoo Cat#: 574054 | Name: Peonidin 3-O-glucoside
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Peonidin 3-O-glucoside is a metabolite of cyanidin 3-glucoside and an anthocyanin with antioxidant, anti-inflammatory, antiproliferative, and anti-metastatic properties. Peonidin 3-O-glucoside inhibits IL-1β-induced phosphorylation of IKKα, IκBα, and ERK in human articular chondrocytes. Peonidin 3-O-glucoside inhibits the growth of Hs578T human breast cancer cells in vitro in a concentration-dependent manner and decreases pulmonary metastasis in a mouse model of Lewis lung carcinoma.

Chemical Structure

Peonidin 3-O-glucoside
Peonidin 3-O-glucoside
CAS#6906-39-4

Theoretical Analysis

MedKoo Cat#: 574054

Name: Peonidin 3-O-glucoside

CAS#: 6906-39-4

Chemical Formula: C22H23ClO11

Exact Mass: 498.0929

Molecular Weight: 498.87

Elemental Analysis: C, 52.97; H, 4.65; Cl, 7.11; O, 35.28

Price and Availability

Size Price Availability Quantity
1mg USD 550.00
5mg USD 1,080.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Peonidin 3-O-glucoside, Peonidin 3-β-D-glucopyranoside
IUPAC/Chemical Name
5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chromenylium chloride
InChi Key
VDTNZDSOEFSAIZ-VXZFYHBOSA-N
InChi Code
InChI=1S/C22H22O11.ClH/c1-30-15-4-9(2-3-12(15)25)21-16(7-11-13(26)5-10(24)6-14(11)31-21)32-22-20(29)19(28)18(27)17(8-23)33-22;/h2-7,17-20,22-23,27-29H,8H2,1H3,(H2-,24,25,26);1H/t17-,18-,19+,20-,22-;/m1./s1
SMILES Code
OC1=CC(O)=C(C=C(O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)C(C3=CC(OC)=C(O)C=C3)=[O+]4)C4=C1.[Cl-]
Appearance
Solid powder
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Peonidin 3-O-glucoside inhibits IL-1β-induced phosphorylation of IKKα, IκBα, and ERK in human articular chondrocytes.
In vitro activity:
The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. Reference: Nutrients. 2023 Jan 11;15(2):372. https://pubmed.ncbi.nlm.nih.gov/36678243/
In vivo activity:
This study demonstrated that P3G (peonidin 3-O-glucoside) could significantly inhibit the invasion (P < 0.001), motility (P < 0.05), secretion of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) of lung cancer cells. The inhibitory effects of P3G may be at least partly through inactivation of ERK 1/2 and AP-1 signaling pathways as confirmed by abolishment of P3G-inhibited H1299 cell invasion by overexpression of MAPK kinase 1 (MEK1). Finally, P3G was evidenced by its inhibition on the metastasis of Lewis lung carcinoma cells in vivo in mice (P < 0.001). Reference: Nutr Cancer. 2010;62(4):505-16. https://pubmed.ncbi.nlm.nih.gov/20432172/

Preparing Stock Solutions

The following data is based on the product molecular weight 498.87 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Hao R, Shan S, Yang D, Zhang H, Sun Y, Li Z. Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients. 2023 Jan 11;15(2):372. doi: 10.3390/nu15020372. PMID: 36678243; PMCID: PMC9866220. 2. Ho ML, Chen PN, Chu SC, Kuo DY, Kuo WH, Chen JY, Hsieh YS. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr Cancer. 2010;62(4):505-16. doi: 10.1080/01635580903441261. PMID: 20432172.
In vitro protocol:
1. Hao R, Shan S, Yang D, Zhang H, Sun Y, Li Z. Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation. Nutrients. 2023 Jan 11;15(2):372. doi: 10.3390/nu15020372. PMID: 36678243; PMCID: PMC9866220.
In vivo protocol:
1. Ho ML, Chen PN, Chu SC, Kuo DY, Kuo WH, Chen JY, Hsieh YS. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr Cancer. 2010;62(4):505-16. doi: 10.1080/01635580903441261. PMID: 20432172.
1: Xie B, Wang M, Yang D. Identification of anthocyanins in deep colored berries and grains in China. Food Chem X. 2024 Jun 27;23:101602. doi: 10.1016/j.fochx.2024.101602. PMID: 39071921; PMCID: PMC11283079. 2: Cortijo-Alfonso ME, Yuste S, Friero I, Martínez-Subirà M, Moralejo M, Piñol- Felis C, Rubió-Piqué L, Macià A. Metabolic profiling of (poly)phenolic compounds in mouse urine following consumption of hull-less and purple-grain barley. Food Funct. 2024 Aug 12;15(16):8300-8309. doi: 10.1039/d4fo01275e. PMID: 39046367. 3: Thapa M, Liu L, Barkla BJ, Kretzschmar T, Rogiers SY, Rose TJ. Accumulation patterns of anthocyanin and γ-oryzanol during black rice grain development. PLoS One. 2024 May 22;19(5):e0302745. doi: 10.1371/journal.pone.0302745. PMID: 38776277; PMCID: PMC11111080. 4: Liu Q, Wang L, He L, Lu Y, Wang L, Fu S, Luo X, Zhang Y. Metabolome and Transcriptome Reveal Chlorophyll, Carotenoid, and Anthocyanin Jointly Regulate the Color Formation of Triadica sebifera. Physiol Plant. 2024 Mar- Apr;176(2):e14248. doi: 10.1111/ppl.14248. PMID: 38488424. 5: Ozturk E, Alpas H, Arici M. Effect of the High Hydrostatic Pressure Process on the Microbial and Physicochemical Quality of Shalgam. ACS Omega. 2024 Feb 19;9(9):10400-10414. doi: 10.1021/acsomega.3c08297. PMID: 38463315; PMCID: PMC10918790. 6: Chachar Z, Lai R, Ahmed N, Lingling M, Chachar S, Paker NP, Qi Y. Cloned genes and genetic regulation of anthocyanin biosynthesis in maize, a comparative review. Front Plant Sci. 2024 Jan 24;15:1310634. doi: 10.3389/fpls.2024.1310634. PMID: 38328707; PMCID: PMC10847539. 7: Zeng HT, Zheng T, Tang Q, Xu H, Chen M. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleifera petals with different color. BMC Plant Biol. 2024 Jan 2;24(1):19. doi: 10.1186/s12870-023-04699-6. PMID: 38166635; PMCID: PMC10759395. 8: Ren R, Shi J, Zeng M, Tang Z, Xie S, Zhang Z. Inter- and intra-varietal genetic variations co-shape the polyphenol profiles of Vitis vinifera L. grapes and wines. Food Chem X. 2023 Nov 25;20:101030. doi: 10.1016/j.fochx.2023.101030. PMID: 38144762; PMCID: PMC10740138. 9: Yuan K, Wu G, Li X, Zeng Y, Wen X, Liu R, Jiang X, Tian L, Sun J, Bai W. Anthocyanins degradation mediated by β-glycosidase contributes to the color loss during alcoholic fermentation in a structure-dependent manner. Food Res Int. 2024 Jan;175:113732. doi: 10.1016/j.foodres.2023.113732. Epub 2023 Nov 25. PMID: 38128989. 10: Cruz MAAS, Pascoal GFL, Jacintho MES, Wagner MLB, Coimbra PPS, Araujo-Lima CF, Junior AP, Teodoro AJ. Antiproliferative and Apoptosis Effects of Hybrid Varieties of Vitis vinifera L. Sweet Sapphire and Sweet Surprise on Human Prostate Cancer Cells Using In Vitro and In Silico Approaches. Asian Pac J Cancer Prev. 2023 Nov 1;24(11):3673-3684. doi: 10.31557/APJCP.2023.24.11.3673. PMID: 38019224; PMCID: PMC10772743. 11: Mackon E, Guo Y, Jeazet Dongho Epse Mackon GC, Ma Y, Yao Y, Luo D, Dai X, Zhao N, Lu Y, Jandan TH, Liu P. OsGSTU34, a Bz2-like anthocyanin-related glutathione transferase transporter, is essential for rice (Oryza sativa L.) organs coloration. Phytochemistry. 2024 Jan;217:113896. doi: 10.1016/j.phytochem.2023.113896. Epub 2023 Oct 20. PMID: 37866445. 12: Melini V, Melini F, Luziatelli F, Ruzzi M. Development of an Ultrasound- Assisted Extraction Procedure for the Simultaneous Determination of Anthocyanins and Phenolic Acids in Black Beans. Foods. 2023 Sep 26;12(19):3566. doi: 10.3390/foods12193566. PMID: 37835220; PMCID: PMC10572765. 13: Xiao P, Zhang H, Liao Q, Zhu N, Chen J, Ma L, Zhang M, Shen S. Insight into the Molecular Mechanism of Flower Color Regulation in Rhododendron latoucheae Franch: A Multi-Omics Approach. Plants (Basel). 2023 Aug 8;12(16):2897. doi: 10.3390/plants12162897. PMID: 37631109; PMCID: PMC10458524. 14: Nistor OV, Milea ȘA, Păcularu-Burada B, Andronoiu DG, Râpeanu G, Stănciuc N. Technologically Driven Approaches for the Integrative Use of Wild Blackthorn (Prunus spinosa L.) Fruits in Foods and Nutraceuticals. Antioxidants (Basel). 2023 Aug 19;12(8):1637. doi: 10.3390/antiox12081637. PMID: 37627632; PMCID: PMC10451162. 15: Kusumawati AH, Garmana AN, Elfahmi E, Mauludin R. Pharmacological studies of the genus rice (Oryza L.): a literature review. Braz J Biol. 2023 Aug 14;83:e272205. doi: 10.1590/1519-6984.272205. PMID: 37585929. 16: Zeng H, Zheng T, Li Y, Chen Q, Xue Y, Tang Q, Xu H, Chen M. Characterization Variation of the Differential Coloring Substances in Rapeseed Petals with Different Colors Using UPLC-HESI-MS/MS. Molecules. 2023 Jul 26;28(15):5670. doi: 10.3390/molecules28155670. PMID: 37570640; PMCID: PMC10419860. 17: Ostos Mendoza KC, Garay Buenrostro KD, Kanabar PN, Maienschein-Cline M, Los NS, Arbieva Z, Raut NA, Lawal TO, López AM, Cabada-Aguirre P, Luna-Vital DA, Mahady GB. Peonidin-3-O-glucoside and Resveratrol Increase the Viability of Cultured Human hFOB Osteoblasts and Alter the Expression of Genes Associated with Apoptosis, Osteoblast Differentiation and Osteoclastogenesis. Nutrients. 2023 Jul 21;15(14):3233. doi: 10.3390/nu15143233. PMID: 37513651; PMCID: PMC10383121. 18: Chu L, Zheng W, Wang J, Wang Z, Zhao W, Zhao B, Xu G, Xiao M, Lou X, Pan F, Zhou Y. Comparative analysis of the difference in flavonoid metabolic pathway during coloring between red-yellow and red sweet cherry (Prunus avium L.). Gene. 2023 Sep 5;880:147602. doi: 10.1016/j.gene.2023.147602. Epub 2023 Jul 7. Erratum in: Gene. 2024 Jul 1;914:148408. doi: 10.1016/j.gene.2024.148408. PMID: 37422177. 19: Carrera EJ, Cejudo-Bastante MJ, Hurtado N, Heredia FJ, González-Miret ML. Revalorization of Colombian purple corn Zea mays L. by-products using two-step column chromatography. Food Res Int. 2023 Jul;169:112931. doi: 10.1016/j.foodres.2023.112931. Epub 2023 May 2. PMID: 37254357. 20: Li Y, Li H, Wang S, Li J, Bacha SAS, Xu G, Li J. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway in blueberry (Vaccinium spp.). Front Plant Sci. 2023 Apr 20;14:1082245. doi: 10.3389/fpls.2023.1082245. PMID: 37152168; PMCID: PMC10157174.