MedKoo Cat#: 574009 | Name: Resorufin β-D-Galactopyranoside
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Resorufin β-D-Galactopyranoside is a fluorogenic substrate for β-galactosidase. Upon enzymatic cleavage by β-galactosidase, the fluorescent moiety resorufin is released and its fluorescence can be used to quantify β-galactosidase activity. Resorufin displays excitation/emission maxima of 570/580 nm, respectively.

Chemical Structure

Resorufin β-D-Galactopyranoside
Resorufin β-D-Galactopyranoside
CAS#95079-19-9

Theoretical Analysis

MedKoo Cat#: 574009

Name: Resorufin β-D-Galactopyranoside

CAS#: 95079-19-9

Chemical Formula: C18H17NO8

Exact Mass: 375.0954

Molecular Weight: 375.33

Elemental Analysis: C, 57.60; H, 4.57; N, 3.73; O, 34.10

Price and Availability

Size Price Availability Quantity
5mg USD 235.00
10mg USD 385.00
25mg USD 620.00
50mg USD 950.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Resorufin β-D-Galactopyranoside
IUPAC/Chemical Name
7-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3H-phenoxazin-3-one
InChi Key
QULZFZMEBOATFS-DISONHOPSA-N
InChi Code
InChI=1S/C18H17NO8/c20-7-14-15(22)16(23)17(24)18(27-14)25-9-2-4-11-13(6-9)26-12-5-8(21)1-3-10(12)19-11/h1-6,14-18,20,22-24H,7H2/t14-,15+,16+,17-,18-/m1/s1
SMILES Code
O=C1C=CC2=NC(C=CC(O[C@@H]3O[C@H](CO)[C@H](O)[C@H](O)[C@H]3O)=C4)=C4OC2=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, DMF, and ethanol
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO, DMF, and ethanol
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Emission: 580 nm Excitation: 570 nm λmax: 245, 458 nm
Product Data
Biological target:
Resorufin β-D-galactopyranoside is a fluorogenic substrate for β-galactosidase.1 Upon enzymatic cleavage by β-galactosidase, the fluorescent moiety resorufin is released and its fluorescence can be used to quantify β-galactosidase activity. Resorufin displays excitation/emission maxima of 570/580 nm, respectively.
In vitro activity:
This study used a resorufin-based fluorescence probe to sense various biogenic amines (Bas). Upon nucleophilic substitution reaction with BAs, the probe released resorufin, affording to strong fluorescence emission at 592 nm with rapid response (<8 min), good selectivity and a low detection limit (LOD = 0.47 μM). Resorufin has low cytotoxicity and good membrane permeability; it has been successfully used to visualize BAs in living cells and zebrafish with good performance. Reference: RSC Adv. 2022 Nov 25;12(52):33870-33875. https://pubmed.ncbi.nlm.nih.gov/36505703/
In vivo activity:
An iodinated resorufin derivative (R1) induced photocytotoxicity after being triggered by endogenous monoamine oxidase (MAO) enzyme in cancer cells. R1 displayed differential cytotoxicity between cancer and normal cells, without any considerable dark toxicity. R1 marks the first example of a resorufin-based photosensitizer as well as the first anticancer drug that is activated by a MAO enzyme. Reference: ACS Med Chem Lett. 2020 Nov 23;11(12):2491-2496. https://pubmed.ncbi.nlm.nih.gov/33335672/
Solvent mg/mL mM
Solubility
DMF 2.0 5.33
DMSO 25.0 66.61
Ethanol 1.0 2.66
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 375.33 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Almammadov T, Atakan G, Leylek O, Ozcan G, Gunbas G, Kolemen S. Resorufin Enters the Photodynamic Therapy Arena: A Monoamine Oxidase Activatable Agent for Selective Cytotoxicity. ACS Med Chem Lett. 2020 Nov 23;11(12):2491-2496. doi: 10.1021/acsmedchemlett.0c00484. PMID: 33335672; PMCID: PMC7734820. 2. Sandholt IS, Olsen BB, Guerra B, Issinger OG. Resorufin: a lead for a new protein kinase CK2 inhibitor. Anticancer Drugs. 2009 Apr;20(4):238-48. doi: 10.1097/CAD.0b013e328326472e. PMID: 19177021. 3. Pei SL, Zhang J, Ge W, Liu C, Sheng R, Zeng L, Pan LH. A resorufin-based fluorescence probe for visualizing biogenic amines in cells and zebrafish. RSC Adv. 2022 Nov 25;12(52):33870-33875. doi: 10.1039/d2ra06482k. PMID: 36505703; PMCID: PMC9693732. 4. Su H, Wang N, Wang J, Wang H, Zhang J, Zhao W. A resorufin-based red-emitting fluorescent probe with high selectivity for tracking endogenous peroxynitrite in living cells and inflammatory mice. Spectrochim Acta A Mol Biomol Spectrosc. 2021 May 5;252:119502. doi: 10.1016/j.saa.2021.119502. Epub 2021 Jan 30. PMID: 33578120.
In vitro protocol:
1. Almammadov T, Atakan G, Leylek O, Ozcan G, Gunbas G, Kolemen S. Resorufin Enters the Photodynamic Therapy Arena: A Monoamine Oxidase Activatable Agent for Selective Cytotoxicity. ACS Med Chem Lett. 2020 Nov 23;11(12):2491-2496. doi: 10.1021/acsmedchemlett.0c00484. PMID: 33335672; PMCID: PMC7734820. 2. Sandholt IS, Olsen BB, Guerra B, Issinger OG. Resorufin: a lead for a new protein kinase CK2 inhibitor. Anticancer Drugs. 2009 Apr;20(4):238-48. doi: 10.1097/CAD.0b013e328326472e. PMID: 19177021.
In vivo protocol:
1. Pei SL, Zhang J, Ge W, Liu C, Sheng R, Zeng L, Pan LH. A resorufin-based fluorescence probe for visualizing biogenic amines in cells and zebrafish. RSC Adv. 2022 Nov 25;12(52):33870-33875. doi: 10.1039/d2ra06482k. PMID: 36505703; PMCID: PMC9693732. 2. Su H, Wang N, Wang J, Wang H, Zhang J, Zhao W. A resorufin-based red-emitting fluorescent probe with high selectivity for tracking endogenous peroxynitrite in living cells and inflammatory mice. Spectrochim Acta A Mol Biomol Spectrosc. 2021 May 5;252:119502. doi: 10.1016/j.saa.2021.119502. Epub 2021 Jan 30. PMID: 33578120.
1: Wen C, Li RS, Guan Y, Chang X, Li N. A Two-Photon-Active Zr-Based Metal- Organic Framework-Based Orthogonal Nanoprobe for Recognition of Cellular Senescence. Anal Chem. 2024 Oct 15;96(41):16170-16178. doi: 10.1021/acs.analchem.4c02758. Epub 2024 Oct 2. PMID: 39358945. 2: Sklavounos AA, Nemr CR, Kelley SO, Wheeler AR. Bacterial classification and antibiotic susceptibility testing on an integrated microfluidic platform. Lab Chip. 2021 Oct 26;21(21):4208-4222. doi: 10.1039/d1lc00609f. PMID: 34549763. 3: Kundu P, Saha S, Gangopadhyay G. A Revisit to Turnover Kinetics of Individual Escherichia coli β-Galactosidase Molecules. J Phys Chem B. 2021 Jul 29;125(29):8010-8020. doi: 10.1021/acs.jpcb.1c04299. Epub 2021 Jul 16. PMID: 34270240. 4: Sahore V, Doonan SR, Bailey RC. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields. Anal Methods. 2018 Sep 21;10(35):4264-4274. doi: 10.1039/C8AY01474D. Epub 2018 Aug 20. PMID: 30886651; PMCID: PMC6419776. 5: Schick D, Schwack W. Detection of estrogen active compounds in hops by planar yeast estrogen screen. J Chromatogr A. 2018 Jan 12;1532:191-197. doi: 10.1016/j.chroma.2017.11.069. Epub 2017 Dec 2. PMID: 29208309. 6: Schick D, Schwack W. Planar yeast estrogen screen with resorufin-β-d- galactopyranoside as substrate. J Chromatogr A. 2017 May 12;1497:155-163. doi: 10.1016/j.chroma.2017.03.047. Epub 2017 Mar 21. PMID: 28359553. 7: Obayashi Y, Iino R, Noji H. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate. Analyst. 2015 Aug 7;140(15):5065-73. doi: 10.1039/c5an00714c. PMID: 26101788. 8: Hess D, Rane A, deMello AJ, Stavrakis S. High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging. Anal Chem. 2015;87(9):4965-72. doi: 10.1021/acs.analchem.5b00766. Epub 2015 Apr 16. PMID: 25849725. 9: Sjostrom SL, Joensson HN, Svahn HA. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Lab Chip. 2013 May 7;13(9):1754-61. doi: 10.1039/c3lc41398e. PMID: 23478908. 10: Xie Y, Ahmed D, Lapsley MI, Lin SC, Nawaz AA, Wang L, Huang TJ. Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic- driven, bubble-based fast micromixer. Anal Chem. 2012 Sep 4;84(17):7495-501. doi: 10.1021/ac301590y. Epub 2012 Aug 14. PMID: 22880882; PMCID: PMC3991781. 11: Bui MP, Li CA, Han KN, Choo J, Lee EK, Seong GH. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem. 2011 Mar 1;83(5):1603-8. doi: 10.1021/ac102472a. Epub 2011 Jan 31. PMID: 21280615. 12: Jambovane S, Duin EC, Kim SK, Hong JW. Determination of kinetic parameters, Km and kcat, with a single experiment on a chip. Anal Chem. 2009 May 1;81(9):3239-45. doi: 10.1021/ac8020938. PMID: 19338287. 13: An SY, Bui MP, Nam YJ, Han KN, Li CA, Choo J, Lee EK, Katoh S, Kumada Y, Seong GH. Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates. J Colloid Interface Sci. 2009 Mar 1;331(1):98-103. doi: 10.1016/j.jcis.2008.11.022. Epub 2008 Nov 17. PMID: 19081576. 14: Baek TJ, Kim NH, Choo J, Lee EK, Seong GH. Photolithographic fabrication of poly(ethylene glycol) microstructures for hydrogel-based microreactors and spatially addressed microarrays. J Microbiol Biotechnol. 2007 Nov;17(11):1826-32. PMID: 18092467. 15: Seong GH, Heo J, Crooks RM. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal Chem. 2003 Jul 1;75(13):3161-7. doi: 10.1021/ac034155b. PMID: 12964765. 16: Eggertson MJ, Craig DB. beta-galactosidase assay using capillary electrophoresis laser-induced fluorescence detection and resorufin-beta-D- galactopyranoside as substrate. Biomed Chromatogr. 1999 Dec;13(8):516-9. doi: 10.1002/(SICI)1099-0801(199912)13:8<516::AID-BMC918>3.0.CO;2-U. PMID: 10611604. 17: Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM. Microchip device for performing enzyme assays. Anal Chem. 1997 Sep 1;69(17):3407-12. doi: 10.1021/ac970192p. PMID: 9286159. 18: Wittrup KD, Bailey JE. A single-cell assay of beta-galactosidase activity in Saccharomyces cerevisiae. Cytometry. 1988 Jul;9(4):394-404. doi: 10.1002/cyto.990090418. PMID: 3135986.