MedKoo Cat#: 585060 | Name: Phleomycin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Phleomycin is a glycopeptide antibiotic from Streptomyces whose cytotoxic action results from its ability to cause DNA fragmentation.

Chemical Structure

Phleomycin
Phleomycin
CAS#11006-33-0

Theoretical Analysis

MedKoo Cat#: 585060

Name: Phleomycin

CAS#: 11006-33-0

Chemical Formula: C55H85ClCuN20O21S2

Exact Mass: 1523.4624

Molecular Weight: 1525.52

Elemental Analysis: C, 43.30; H, 5.62; Cl, 2.32; Cu, 4.17; N, 18.36; O, 22.02; S, 4.20

Price and Availability

Size Price Availability Quantity
5mg USD 450.00
10mg USD 550.00
25mg USD 875.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Phleomycin
IUPAC/Chemical Name
(2R,3S,4S,5R,6R)-2-(((2R,3S,4S,5S,6S)-2-(2-(6-amino-2-(3-amino-1-((2,3-diamino-3-oxopropyl)amino)-3-oxopropyl)-5-methylpyrimidine-4-carboxamido)-3-((5-((1-((2-(4-((4-guanidinobutyl)carbamoyl)-4',5'-dihydro-[2,4'-bithiazol]-2'-yl)ethyl)amino)-3-hydroxy-1-oxobutan-2-yl)amino)-3-hydroxy-4-methyl-5-oxopentan-2-yl)amino)-1-(1H-imidazol-4-yl)-3-oxopropoxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)oxy)-3,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-4-yl carbamate, copper(II) salt, monohydrochloride
InChi Key
QZGJYYBUEYHNGV-GEYAUAICSA-N
InChi Code
InChI=1S/C55H84N20O21S2.ClH.Cu/c1-19-32(72-45(75-43(19)58)24(11-30(57)79)67-12-23(56)44(59)85)49(89)74-34(40(25-13-63-18-68-25)94-53-42(38(83)36(81)28(14-76)93-53)95-52-39(84)41(96-55(62)91)37(82)29(15-77)92-52)50(90)69-21(3)35(80)20(2)46(86)73-33(22(4)78)48(88)65-10-7-31-70-27(17-97-31)51-71-26(16-98-51)47(87)64-8-5-6-9-66-54(60)61;;/h13,16,18,20-24,27-29,33-42,52-53,67,76,78,80-81,83-84H,5-12,14-15,17,56H2,1-4H3,(H2,57,79)(H2,59,85)(H2,62,91)(H,63,68)(H,64,87)(H,65,88)(H,69,90)(H,73,86)(H,74,89)(H2,58,72,75)(H4,60,61,66);1H;/q-2;;+2/t20?,21?,22?,23?,24?,27?,28-,29+,33?,34?,35?,36+,37+,38-,39-,40?,41-,42-,52+,53-;;/m0../s1
SMILES Code
NC(O[C@@H]1[C@H](O)[C@@H](O[C@@H]2[C@H](OC(C3=CNC=N3)C(NC(C4=NC(C(NCC(N)C(N)=O)CC(N)=O)=NC(N)=C4C)=O)C(NC(C(O)C(C)C(NC(C(O)C)C(NCCC5=NC(C6=NC(C(NCCCCNC(N)=N)=O)=CS6)CS5)=O)=O)C)=O)O[C@@H](CO)[C@@H](O)[C@@H]2O)O[C@H](C[O-])[C@H]1[O-])=O.[H]Cl.[Cu+2]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Phleomycin is an anticancer glycopeptide antibiotic found in Streptomyces verticillus, which cause DNA cleavage.
In vitro activity:
This paper describes the acid-base properties of phleomycin and the coordination sphere of the Cu(II) cation. Phleomycin complexes are able to induce single- and double-stranded DNA damage when they are accompanied by one-electron reductants, such as dithiothreitol, glutathione, 2-mercaptoethanol or ascorbic acid. Reference: J Inorg Biochem. 2019 Jun;195:71-82. https://pubmed.ncbi.nlm.nih.gov/30927561/
In vivo activity:
TBD
Solvent mg/mL mM comments
Solubility
PBS (pH 7.2)\ 10.0 6.56
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 1,525.52 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Stokowa-Sołtys K, Dzyhovskyi V, Wieczorek R, Jeżowska-Bojczuk M. Phleomycin complex - Coordination mode and in vitro cleavage of DNA. J Inorg Biochem. 2019 Jun;195:71-82. doi: 10.1016/j.jinorgbio.2019.03.010. Epub 2019 Mar 21. PMID: 30927561. 2. Jansson K, Alao JP, Viktorsson K, Warringer J, Lewensohn R, Sunnerhagen P. A role for Myh1 in DNA repair after treatment with strand-breaking and crosslinking chemotherapeutic agents. Environ Mol Mutagen. 2013 Jun;54(5):327-37. doi: 10.1002/em.21784. Epub 2013 May 16. PMID: 23677513.
In vitro protocol:
1. Stokowa-Sołtys K, Dzyhovskyi V, Wieczorek R, Jeżowska-Bojczuk M. Phleomycin complex - Coordination mode and in vitro cleavage of DNA. J Inorg Biochem. 2019 Jun;195:71-82. doi: 10.1016/j.jinorgbio.2019.03.010. Epub 2019 Mar 21. PMID: 30927561. 2. Jansson K, Alao JP, Viktorsson K, Warringer J, Lewensohn R, Sunnerhagen P. A role for Myh1 in DNA repair after treatment with strand-breaking and crosslinking chemotherapeutic agents. Environ Mol Mutagen. 2013 Jun;54(5):327-37. doi: 10.1002/em.21784. Epub 2013 May 16. PMID: 23677513.
In vivo protocol:
TBD
1: Mohan N, Johnson GS, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. Alternative splicing of BAZ1A in colorectal cancer disrupts the DNA damage response and increases chemosensitization. Cell Death Dis. 2024 Aug 7;15(8):570. doi: 10.1038/s41419-024-06954-6. PMID: 39112459; PMCID: PMC11306231. 2: Siler J, Guo N, Liu Z, Qin Y, Bi X. γH2A/γH2AX Mediates DNA Damage-Specific Control of Checkpoint Signaling in Saccharomyces cerevisiae. Int J Mol Sci. 2024 Feb 20;25(5):2462. doi: 10.3390/ijms25052462. PMID: 38473708; PMCID: PMC10930940. 3: Florsheim N, Naugolni L, Zahdeh F, Lobel O, Terespolsky B, Michaelson-Cohen R, Gold MY, Goldberg M, Renbaum P, Levy-Lahad E, Zangen D. Loss of function of FIGNL1, a DNA damage response gene, causes human ovarian dysgenesis. Eur J Endocrinol. 2023 Sep 1;189(3):K7-K14. doi: 10.1093/ejendo/lvad127. PMID: 37740949. 4: Moreno-Giménez E, Gandía M, Sáez Z, Manzanares P, Yenush L, Orzáez D, Marcos JF, Garrigues S. FungalBraid 2.0: expanding the synthetic biology toolbox for the biotechnological exploitation of filamentous fungi. Front Bioeng Biotechnol. 2023 Aug 7;11:1222812. doi: 10.3389/fbioe.2023.1222812. PMID: 37609115; PMCID: PMC10441238. 5: Garofalo M, Payros D, Penary M, Oswald E, Nougayrède JP, Oswald IP. A novel toxic effect of foodborne trichothecenes: The exacerbation of genotoxicity. Environ Pollut. 2023 Jan 15;317:120625. doi: 10.1016/j.envpol.2022.120625. Epub 2022 Nov 18. PMID: 36410598. 6: Goswami S, Gowrishankar J. Role for DNA double strand end-resection activity of RecBCD in control of aberrant chromosomal replication initiation in Escherichia coli. Nucleic Acids Res. 2022 Aug 26;50(15):8643-8657. doi: 10.1093/nar/gkac670. PMID: 35929028; PMCID: PMC9410895. 7: Mallikarjun J, Gowrishankar J. Essential Role for an Isoform of Escherichia coli Translation Initiation Factor IF2 in Repair of Two-Ended DNA Double-Strand Breaks. J Bacteriol. 2022 Apr 19;204(4):e0057121. doi: 10.1128/jb.00571-21. Epub 2022 Mar 28. PMID: 35343794; PMCID: PMC9017324. 8: Garofalo M, Payros D, Oswald E, Nougayrède JP, Oswald IP. The foodborne contaminant deoxynivalenol exacerbates DNA damage caused by a broad spectrum of genotoxic agents. Sci Total Environ. 2022 May 10;820:153280. doi: 10.1016/j.scitotenv.2022.153280. Epub 2022 Jan 20. PMID: 35066032. 9: Shen J, Zhao Y, Pham NT, Li Y, Zhang Y, Trinidad J, Ira G, Qi Z, Niu H. Deciphering the mechanism of processive ssDNA digestion by the Dna2-RPA ensemble. Nat Commun. 2022 Jan 18;13(1):359. doi: 10.1038/s41467-021-27940-y. PMID: 35042867; PMCID: PMC8766458. 10: Yoblinski AR, Chung S, Robinson SB, Forester KE, Strahl BD, Dronamraju R. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae. J Biol Chem. 2021 Jan- Jun;296:100721. doi: 10.1016/j.jbc.2021.100721. Epub 2021 Apr 29. PMID: 33933452; PMCID: PMC8165551. 11: Dahlmann TA, Terfehr D, Becker K, Teichert I. Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr Genet. 2021 Apr;67(2):317-330. doi: 10.1007/s00294-020-01143-2. Epub 2020 Dec 24. PMID: 33367953; PMCID: PMC8032637. 12: Reigada C, Sayé M, Girolamo FD, Valera-Vera EA, Pereira CA, Miranda MR. Role of Trypanosoma cruzi nucleoside diphosphate kinase 1 in DNA damage responses. Mem Inst Oswaldo Cruz. 2020;115:e200019. doi: 10.1590/0074-02760200019. Epub 2020 Jul 15. PMID: 32696913; PMCID: PMC7362669. 13: Molina-Márquez A, Vila M, Rengel R, Fernández E, García-Maroto F, Vigara J, León R. Validation of a New Multicistronic Plasmid for the Efficient and Stable Expression of Transgenes in Microalgae. Int J Mol Sci. 2020 Jan 22;21(3):718. doi: 10.3390/ijms21030718. PMID: 31979077; PMCID: PMC7037629. 14: Mahmoudjanlou Y, Hoff B, Kück U. Construction of a Codon-Adapted Nourseotricin-Resistance Marker Gene for Efficient Targeted Gene Deletion in the Mycophenolic Acid Producer Penicillium brevicompactum. J Fungi (Basel). 2019 Oct 10;5(4):96. doi: 10.3390/jof5040096. PMID: 31658687; PMCID: PMC6958462. 15: Vu TX, Vu HH, Nguyen GT, Vu HT, Mai LTD, Pham DN, Le DH, Nguyen HQ, Tran VT. A newly constructed Agrobacterium-mediated transformation system revealed the influence of nitrogen sources on the function of the LaeA regulator in Penicillium chrysogenum. Fungal Biol. 2019 Nov;123(11):830-842. doi: 10.1016/j.funbio.2019.08.010. Epub 2019 Sep 6. PMID: 31627859. 16: Liu J, François JM, Capp JP. Gene Expression Noise Produces Cell-to-Cell Heterogeneity in Eukaryotic Homologous Recombination Rate. Front Genet. 2019 May 21;10:475. doi: 10.3389/fgene.2019.00475. PMID: 31164905; PMCID: PMC6536703. 17: Myka KK, Gottesman ME. DksA and DNA double-strand break repair. Curr Genet. 2019 Dec;65(6):1297-1300. doi: 10.1007/s00294-019-00983-x. Epub 2019 May 10. PMID: 31076845. 18: Raghunathan N, Goswami S, Leela JK, Pandiyan A, Gowrishankar J. A new role for Escherichia coli Dam DNA methylase in prevention of aberrant chromosomal replication. Nucleic Acids Res. 2019 Jun 20;47(11):5698-5711. doi: 10.1093/nar/gkz242. PMID: 30957852; PMCID: PMC6582345. 19: Stokowa-Sołtys K, Dzyhovskyi V, Wieczorek R, Jeżowska-Bojczuk M. Phleomycin complex - Coordination mode and in vitro cleavage of DNA. J Inorg Biochem. 2019 Jun;195:71-82. doi: 10.1016/j.jinorgbio.2019.03.010. Epub 2019 Mar 21. PMID: 30927561. 20: Tokunaga S, Sanda S, Uraguchi Y, Nakagawa S, Sawayama S. Overexpression of the DOF-Type Transcription Factor Enhances Lipid Synthesis in Chlorella vulgaris. Appl Biochem Biotechnol. 2019 Sep;189(1):116-128. doi: 10.1007/s12010-019-02990-7. Epub 2019 Mar 16. PMID: 30877635.