MedKoo Cat#: 581924 | Name: Methyl decanoate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Methyl decanoate is an unsaturated biodiesel fuel surrogate. It can also be used as flavor and fragrance ingredients.

Chemical Structure

Methyl decanoate
Methyl decanoate
CAS#110-42-9

Theoretical Analysis

MedKoo Cat#: 581924

Name: Methyl decanoate

CAS#: 110-42-9

Chemical Formula: C11H22O2

Exact Mass: 186.1620

Molecular Weight: 186.30

Elemental Analysis: C, 70.92; H, 11.90; O, 17.18

Price and Availability

Size Price Availability Quantity
100g USD 450.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Methyl decanoate; Capric acid methyl ester; Decanoic acid, methyl ester; Methyl caprate; Methyl caprinate; Methyl n-caprate; Methyl n-decanoate; Methyl-n-caprate
IUPAC/Chemical Name
methyl decanoate
InChi Key
YRHYCMZPEVDGFQ-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H22O2/c1-3-4-5-6-7-8-9-10-11(12)13-2/h3-10H2,1-2H3
SMILES Code
C(CCCCCCCC)C(=O)OC
Appearance
Liquid
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Methyl decanoate is an unsaturated biodiesel fuel surrogate.
In vitro activity:
This study utilizes this model to analyze a role for MCFAs in regulating autophagy. This study shows that treatment with decanoic acid but not octanoic acid induces autophagosome formation and modulates autophagic flux in high glucose conditions. To investigate this effect, decanoic acid, but not octanoic acid, was found to induce the expression of autophagy-inducing proteins (Atg1 and Atg8), providing a mechanism for this effect. Reference: Cells. 2021 Oct 29;10(11):2946. https://pubmed.ncbi.nlm.nih.gov/34831171/
In vivo activity:
DA (decanoic acid) inhibited the mean firing frequency of both TG and SpVc NS neurons, reaching a maximum inhibition of discharge frequency within 1-5 minutes and reversing after approximately 10-minutes; however, this DA-induced suppression of SpVc NS neuronal firing frequency did not occur in rats administered with methoctramine intravenously prior to stimulation. Reference: J Pain Res. 2018 Nov 14;11:2867-2876. https://pubmed.ncbi.nlm.nih.gov/30532581/
Solvent mg/mL mM comments
Solubility
Ethanol 25.0 134.20
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 186.30 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Warren EC, Kramár P, Lloyd-Jones K, Williams RSB. Decanoic Acid Stimulates Autophagy in D. discoideum. Cells. 2021 Oct 29;10(11):2946. doi: 10.3390/cells10112946. PMID: 34831171; PMCID: PMC8616062. 2. Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI. Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain. 2021 Sep 3;14(1):132. doi: 10.1186/s13041-021-00842-2. PMID: 34479615; PMCID: PMC8414667. 3. Nakajima R, Uehara A, Takehana S, Akama Y, Shimazu Y, Takeda M. Decanoic acid attenuates the excitability of nociceptive trigeminal primary and secondary neurons associated with hypoalgesia. J Pain Res. 2018 Nov 14;11:2867-2876. doi: 10.2147/JPR.S181032. PMID: 30532581; PMCID: PMC6241697. 4. Noguchi Y, Matsuzawa N, Akama Y, Sekiguchi K, Takehana S, Shimazu Y, Takeda M. Dietary constituent, decanoic acid suppresses the excitability of nociceptive trigeminal neuronal activity associated with hypoalgesia via muscarinic M2 receptor signaling. Mol Pain. 2017 Jan-Dec;13:1744806917710779. doi: 10.1177/1744806917710779. PMID: 28474958; PMCID: PMC5448867.
In vitro protocol:
1. Warren EC, Kramár P, Lloyd-Jones K, Williams RSB. Decanoic Acid Stimulates Autophagy in D. discoideum. Cells. 2021 Oct 29;10(11):2946. doi: 10.3390/cells10112946. PMID: 34831171; PMCID: PMC8616062. 2. Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI. Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain. 2021 Sep 3;14(1):132. doi: 10.1186/s13041-021-00842-2. PMID: 34479615; PMCID: PMC8414667.
In vivo protocol:
1. Nakajima R, Uehara A, Takehana S, Akama Y, Shimazu Y, Takeda M. Decanoic acid attenuates the excitability of nociceptive trigeminal primary and secondary neurons associated with hypoalgesia. J Pain Res. 2018 Nov 14;11:2867-2876. doi: 10.2147/JPR.S181032. PMID: 30532581; PMCID: PMC6241697. 2. Noguchi Y, Matsuzawa N, Akama Y, Sekiguchi K, Takehana S, Shimazu Y, Takeda M. Dietary constituent, decanoic acid suppresses the excitability of nociceptive trigeminal neuronal activity associated with hypoalgesia via muscarinic M2 receptor signaling. Mol Pain. 2017 Jan-Dec;13:1744806917710779. doi: 10.1177/1744806917710779. PMID: 28474958; PMCID: PMC5448867.
1: Debnath S, Sengupta A, Raghavachari K. Eliminating Systematic Errors in DFT via Connectivity-Based Hierarchy: Accurate Bond Dissociation Energies of Biodiesel Methyl Esters. J Phys Chem A. 2019 Apr 25;123(16):3543-3550. doi: 10.1021/acs.jpca.9b01478. Epub 2019 Apr 15. PubMed PMID: 30986067. 2: Tillman PG, Cottrell TE. Influence of Pheromone-Baited Traps on Stink Bugs in Cotton. J Insect Sci. 2019 Jan 1;19(1). pii: iey140. doi: 10.1093/jisesa/iey140. PubMed PMID: 30794727; PubMed Central PMCID: PMC6380218. 3: Meng Q, Chi Y, Zhang L, Zhang P, Sheng L. Towards high-level theoretical studies of large biodiesel molecules: an ONIOM/RRKM/Master-equation approach to the isomerization and dissociation kinetics of methyl decanoate radicals. Phys Chem Chem Phys. 2019 Feb 27;21(9):5232-5242. doi: 10.1039/c8cp05593a. PubMed PMID: 30775733. 4: Niu Y, Wang P, Xiao Z, Zhu J, Sun X, Wang R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019 Mar 1;275:143-153. doi: 10.1016/j.foodchem.2018.09.102. Epub 2018 Sep 17. PubMed PMID: 30724180. 5: Chen J, Nan R, Wang R, Zhang L, Shi J. Ester-Producing Mechanism of Ethanol O-acyltransferase EHT1 Gene in Pichia pastoris from Shanxi Aged Vinegar. Biomed Res Int. 2019 Jan 3;2019:4862647. doi: 10.1155/2019/4862647. eCollection 2019. PubMed PMID: 30719444; PubMed Central PMCID: PMC6335666. 6: Park MK, Choi HS, Kim YS, Cho IH. Change in profiles of volatile compounds from two types of Fagopyrum esculentum (buckwheat) soksungjang during fermentation. Food Sci Biotechnol. 2017 Aug 3;26(4):871-882. doi: 10.1007/s10068-017-0115-1. eCollection 2017. PubMed PMID: 30263615; PubMed Central PMCID: PMC6049563. 7: Geiger DK, Geiger HC, Morell DL. An exploration of O-H⋯O and C-H⋯π inter-actions in a long-chain-ester-substituted phenyl-phenol: methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate. Acta Crystallogr E Crystallogr Commun. 2018 Apr 17;74(Pt 5):594-599. doi: 10.1107/S2056989017016589. eCollection 2018 May 1. PubMed PMID: 29850074; PubMed Central PMCID: PMC5947469. 8: Schmidt M, Deckwerth J, Schomäcker R, Schwarze M. Alkaline Hydrolysis of Methyl Decanoate in Surfactant-Based Systems. J Org Chem. 2018 Jul 20;83(14):7398-7406. doi: 10.1021/acs.joc.8b00247. Epub 2018 May 23. PubMed PMID: 29762024. 9: Sugiharto YEC, Lee H, Fitriana AD, Lee H, Jeon W, Park K, Ahn J, Lee H. Effect of decanoic acid and 10-hydroxydecanoic acid on the biotransformation of methyl decanoate to sebacic acid. AMB Express. 2018 May 5;8(1):75. doi: 10.1186/s13568-018-0605-4. PubMed PMID: 29730843; PubMed Central PMCID: PMC5936482. 10: Zhang BQ, Luan Y, Duan CQ, Yan GL. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile. Front Microbiol. 2018 Apr 5;9:606. doi: 10.3389/fmicb.2018.00606. eCollection 2018. PubMed PMID: 29674999; PubMed Central PMCID: PMC5895779. 11: Pinto J, Oliveira AS, Azevedo J, De Freitas V, Lopes P, Roseira I, Cabral M, Guedes de Pinho P. Assessment of oxidation compounds in oaked Chardonnay wines: A GC-MS and (1)H NMR metabolomics approach. Food Chem. 2018 Aug 15;257:120-127. doi: 10.1016/j.foodchem.2018.02.156. Epub 2018 Mar 2. PubMed PMID: 29622187. 12: Pappa EC, Bontinis TG, Tasioula-Margari M, Samelis J. Microbial Quality of and Biochemical Changes in Fresh Soft, Acid-Curd Xinotyri Cheese Made from Raw or Pasteurized Goat's Milk. Food Technol Biotechnol. 2017 Dec;55(4):496-510. doi: 10.17113/ftb.55.04.17.5338. PubMed PMID: 29540984; PubMed Central PMCID: PMC5848199. 13: Franitza L, Nicolotti L, Granvogl M, Schieberle P. Differentiation of Rums Produced from Sugar Cane Juice (Rhum Agricole) from Rums Manufactured from Sugar Cane Molasses by a Metabolomics Approach. J Agric Food Chem. 2018 Mar 21;66(11):3038-3045. doi: 10.1021/acs.jafc.8b00180. Epub 2018 Mar 6. PubMed PMID: 29455529. 14: Chang PK, Yu L, Chen JC. Dopamine D3 receptor blockade rescues hyper-dopamine activity-induced deficit in novel object recognition memory. Neuropharmacology. 2018 May 1;133:216-223. doi: 10.1016/j.neuropharm.2018.01.046. Epub 2018 Feb 1. PubMed PMID: 29407766. 15: Mahmud ZA, Jenkins L, Ulven T, Labéguère F, Gosmini R, De Vos S, Hudson BD, Tikhonova IG, Milligan G. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84. Sci Rep. 2017 Dec 20;7(1):17953. doi: 10.1038/s41598-017-18159-3. PubMed PMID: 29263400; PubMed Central PMCID: PMC5738391. 16: Jaramillo IC, Sturrock A, Ghiassi H, Woller DJ, Deering-Rice CE, Lighty JS, Paine R, Reilly C, Kelly KE. Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018 Mar 21;53(4):295-309. doi: 10.1080/10934529.2017.1400793. Epub 2017 Dec 11. PubMed PMID: 29227181; PubMed Central PMCID: PMC5815945. 17: C RK, R LS, D A, V S, Vasudevan V, Krishnan MEG. Demonstration of bioprocess factors optimization for enhanced mono-rhamnolipid production by a marine Pseudomonas guguanensis. Int J Biol Macromol. 2018 Mar;108:531-540. doi: 10.1016/j.ijbiomac.2017.10.186. Epub 2017 Dec 5. PubMed PMID: 29208557. 18: Su HG, Yang H, Meng CW, Peng C, Guo L, Dai O. [Study on chemical constituents of seeds of Croton tiglium and their cytotoxicities]. Zhongguo Zhong Yao Za Zhi. 2016 Oct;41(19):3620-3623. doi: 10.4268/cjcmm20161920. Chinese. PubMed PMID: 28925158. 19: Andrade RP, Melo CN, Genisheva Z, Schwan RF, Duarte WF. Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Food Res Int. 2017 Jan;91:72-79. doi: 10.1016/j.foodres.2016.11.032. Epub 2016 Nov 30. PubMed PMID: 28290329. 20: Hu J, Kai D, Ye H, Tian L, Ding X, Ramakrishna S, Loh XJ. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):1089-1094. doi: 10.1016/j.msec.2016.03.035. Epub 2016 Mar 18. PubMed PMID: 27772709.