MedKoo Cat#: 565283 | Name: Pateamine A

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pateamine A is a marine macrolide that is isolated from the sponge Mycale hentscheli and exhibits anticancer and antiviral properties. It has a role as a marine metabolite, an antiviral agent, an antineoplastic agent, and a eukaryotic initiation factor 4F inhibitor. It is a macrolide, a member of 1,3-thiazoles, a tertiary amino compound, a primary amino compound, and an olefinic compound. Pateamine A an inhibitor of eukaryotic translation.

Chemical Structure

Pateamine A
Pateamine A
CAS#139220-18-1

Theoretical Analysis

MedKoo Cat#: 565283

Name: Pateamine A

CAS#: 139220-18-1

Chemical Formula: C31H45N3O4S

Exact Mass: 555.3131

Molecular Weight: 555.78

Elemental Analysis: C, 66.99; H, 8.16; N, 7.56; O, 11.51; S, 5.77

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Pateamine A; (-)-Pateamine; (-)-Pateamine A; Pateamine;
IUPAC/Chemical Name
4,12-Dioxa-20-thia-21-azabicyclo[16.2.1]heneicosa-1(21),6,8,18-tetraene-5,13-dione, 15-amino-3-[(1E,3E,5E)-7-(dimethylamino)-2,5-dimethyl-1,3,5-heptatrien-1-yl]-9,11,17-trimethyl-, (3S,6Z,8E,11S,15R,17S)-
InChi Key
DSPNTLCJTJBXTD-IRNRRZNASA-N
InChi Code
InChI=1S/C31H45N3O4S/c1-21(13-14-34(6)7)11-12-23(3)16-27-19-29-33-28(20-39-29)24(4)17-26(32)18-31(36)37-25(5)15-22(2)9-8-10-30(35)38-27/h8-13,16,20,24-27H,14-15,17-19,32H2,1-7H3/b10-8-,12-11+,21-13+,22-9+,23-16+/t24-,25-,26+,27+/m0/s1
SMILES Code
O=C(/C=C\C=C(C)\C[C@H](C)OC(C[C@H](N)C[C@@H]1C)=O)O[C@H](/C=C(C)/C=C/C(C)=C/CN(C)C)CC2=NC1=CS2
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 555.78 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Chen R, Zhu M, Chaudhari RR, Robles O, Chen Y, Skillern W, Qin Q, Wierda WG, Zhang S, Hull KG, Romo D, Plunkett W. Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia. 2019 Jan 30. doi: 10.1038/s41375-018-0364-x. [Epub ahead of print] PubMed PMID: 30700841. 2: Zhuo CX, Fürstner A. Catalysis-Based Total Syntheses of Pateamine A and DMDA-Pat A. J Am Chem Soc. 2018 Aug 22;140(33):10514-10523. doi: 10.1021/jacs.8b05094. Epub 2018 Aug 14. PubMed PMID: 30056701. 3: Hemi Cumming A, Brown SL, Tao X, Cuyamendous C, Field JJ, Miller JH, Harvey JE, Teesdale-Spittle PH. Synthesis of a simplified triazole analogue of pateamine A. Org Biomol Chem. 2016 Jun 14;14(22):5117-27. doi: 10.1039/c6ob00086j. Epub 2016 May 16. PubMed PMID: 27180995; PubMed Central PMCID: PMC5166979. 4: Popa A, Lebrigand K, Barbry P, Waldmann R. Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells. BMC Genomics. 2016 Jan 14;17:52. doi: 10.1186/s12864-016-2384-0. PubMed PMID: 26764022; PubMed Central PMCID: PMC4712605. 5: González-Almela E, Sanz MA, García-Moreno M, Northcote P, Pelletier J, Carrasco L. Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology. 2015 Oct;484:41-50. doi: 10.1016/j.virol.2015.05.002. Epub 2015 Jun 5. PubMed PMID: 26057151. 6: Matthews JH, Maass DR, Northcote PT, Atkinson PH, Teesdale-Spittle PH. The cellular target specificity of pateamine A. Z Naturforsch C. 2013 Sep-Oct;68(9-10):406-15. PubMed PMID: 24459774. 7: Low WK, Li J, Zhu M, Kommaraju SS, Shah-Mittal J, Hull K, Liu JO, Romo D. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg Med Chem. 2014 Jan 1;22(1):116-25. doi: 10.1016/j.bmc.2013.11.046. Epub 2013 Dec 4. PubMed PMID: 24359706; PubMed Central PMCID: PMC3958936. 8: Cramer Z, Sadek J, Vazquez GG, Di Marco S, Pause A, Pelletier J, Gallouzi IE. eIF4A inhibition prevents the onset of cytokine-induced muscle wasting by blocking the STAT3 and iNOS pathways. Sci Rep. 2018 May 30;8(1):8414. doi: 10.1038/s41598-018-26625-9. PubMed PMID: 29849089; PubMed Central PMCID: PMC5976662. 9: González-Almela E, Williams H, Sanz MA, Carrasco L. The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells. Front Microbiol. 2018 Feb 13;9:207. doi: 10.3389/fmicb.2018.00207. eCollection 2018. PubMed PMID: 29487587; PubMed Central PMCID: PMC5816946. 10: Slaine PD, Kleer M, Smith NK, Khaperskyy DA, McCormick C. Stress Granule-Inducing Eukaryotic Translation Initiation Factor 4A Inhibitors Block Influenza A Virus Replication. Viruses. 2017 Dec 18;9(12). pii: E388. doi: 10.3390/v9120388. PubMed PMID: 29258238; PubMed Central PMCID: PMC5744162. 11: Amorim R, Temzi A, Griffin BD, Mouland AJ. Zika virus inhibits eIF2α-dependent stress granule assembly. PLoS Negl Trop Dis. 2017 Jul 17;11(7):e0005775. doi: 10.1371/journal.pntd.0005775. eCollection 2017 Jul. PubMed PMID: 28715409; PubMed Central PMCID: PMC5531678. 12: Malka-Mahieu H, Newman M, Désaubry L, Robert C, Vagner S. Molecular Pathways: The eIF4F Translation Initiation Complex-New Opportunities for Cancer Treatment. Clin Cancer Res. 2017 Jan 1;23(1):21-25. doi: 10.1158/1078-0432.CCR-14-2362. Epub 2016 Oct 27. Review. PubMed PMID: 27789529. 13: Vonaesch P, Campbell-Valois FX, Dufour A, Sansonetti PJ, Schnupf P. Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation. Cell Microbiol. 2016 Jul;18(7):982-97. doi: 10.1111/cmi.12561. Epub 2016 Jan 29. Erratum in: Cell Microbiol. 2016 Dec;18(12 ):1892. PubMed PMID: 27282465. 14: Khong A, Bonderoff JM, Spriggs RV, Tammpere E, Kerr CH, Jackson TJ, Willis AE, Jan E. Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus. Viruses. 2016 Jan 19;8(1). pii: E25. doi: 10.3390/v8010025. PubMed PMID: 26797630; PubMed Central PMCID: PMC4728584. 15: Ziehr B, Lenarcic E, Cecil C, Moorman NJ. The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication. Virology. 2016 Feb;489:194-201. doi: 10.1016/j.virol.2015.12.009. Epub 2016 Jan 8. PubMed PMID: 26773380; PubMed Central PMCID: PMC4907506. 16: Katz S, Trebicz-Geffen M, Ankri S. Stress granule formation in Entamoeba histolytica: cross-talk between EhMLBP, EhRLE3 reverse transcriptase and polyubiquitinated proteins. Cell Microbiol. 2014 Aug;16(8):1211-23. doi: 10.1111/cmi.12273. Epub 2014 Feb 28. PubMed PMID: 24471581.