1: Wu Q, Gai S, Zhang H. Asperulosidic Acid, a Bioactive Iridoid, Alleviates Placental Oxidative Stress and Inflammatory Responses in Gestational Diabetes Mellitus by Suppressing NF-κB and MAPK Signaling Pathways. Pharmacology. 2022;107(3-4):197-205. doi: 10.1159/000521080. Epub 2022 Jan 10. PMID: 35008094.
2: Li L, Qiu H. Asperulosidic Acid Restrains Hepatocellular Carcinoma Development and Enhances Chemosensitivity Through Inactivating the MEKK1/NF-κB Pathway. Appl Biochem Biotechnol. 2023 Apr 25. doi: 10.1007/s12010-023-04500-2. Epub ahead of print. PMID: 37097403.
3: Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Hsien-Yeh, Lin B, Song HT, Juan-Liu, Yang HY, Qin LP, Zhang QY, Du J. Morinda officinalis How. - A comprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2018 Mar 1;213:230-255. doi: 10.1016/j.jep.2017.10.028. Epub 2017 Nov 7. PMID: 29126988.
4: He J, Lu X, Wei T, Dong Y, Cai Z, Tang L, Liu M. Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF- κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages. Int J Mol Sci. 2018 Jul 12;19(7):2027. doi: 10.3390/ijms19072027. PMID: 30002289; PMCID: PMC6073666.
5: Xianyuan L, Wei Z, Yaqian D, Dan Z, Xueli T, Zhanglu D, Guanyi L, Lan T, Menghua L. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Phytomedicine. 2019 Feb;53:274-285. doi: 10.1016/j.phymed.2018.09.009. Epub 2018 Sep 5. PMID: 30668407.
6: Bittová M, Hladůkova D, Roblová V, Krácmar S, Kubán P, Kubán V. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products. Nat Prod Commun. 2015 Nov;10(11):1817-20. PMID: 26749805.
7: Chen YF, Zhang JY, Zhao MH, Yan M, Zhao QC, Wu Q, Jin H, Shi GB. The analgesic activity and possible mechanisms of deacetyl asperulosidic acid methyl ester from Ji shi teng in mice. Pharmacol Biochem Behav. 2012 Oct;102(4):585-92. doi: 10.1016/j.pbb.2012.07.005. Epub 2012 Jul 25. PMID: 22841536.
8: Shen Y, Zhang Q, Wu YB, He YQ, Han T, Zhang JH, Zhao L, Hsu HY, Song HT, Lin B, Xin HL, Qi YP, Zhang QY. Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats. BMC Complement Altern Med. 2018 Oct 24;18(1):288. doi: 10.1186/s12906-018-2351-1. PMID: 30355303; PMCID: PMC6201592.
9: Venditti A, Altieri A, Bianco A. Monoterpenoids glycosides content from two Mediterranean populations of Crucianella maritima L. Nat Prod Res. 2014;28(8):586-8. doi: 10.1080/14786419.2014.882920. Epub 2014 Feb 5. PMID: 24499293.
10: Tran PH, Le VD, Do TH, Nguyen TL, Nguyen PT, Nguyen TT, Nguyen TD. Anti- inflammatory constituents from Psychotria prainii H. Lév. Nat Prod Res. 2019 Mar;33(5):695-700. doi: 10.1080/14786419.2017.1408095. Epub 2017 Dec 6. PMID: 29212359.
11: Wu J, Ye ZJ, Yu LJ, Chen XQ. Two new iridoid glycosides from Hedyotis diffusa. J Asian Nat Prod Res. 2023 Jan;25(1):27-35. doi: 10.1080/10286020.2022.2047946. Epub 2022 May 3. PMID: 35503565.
12: Wang C, Xin P, Wang Y, Zhou X, Wei D, Deng C, Sun S. Iridoids and sfingolipids from Hedyotis diffusa. Fitoterapia. 2018 Jan;124:152-159. doi: 10.1016/j.fitote.2017.11.004. Epub 2017 Nov 6. PMID: 29122633.
13: Ye X, Feng WH, Zhang D, Liu XQ, Liang YH, Li C, Wang ZM. [Correlation of non-crocin components of Gardeniae Fructus with its external properties]. Zhongguo Zhong Yao Za Zhi. 2022 Aug;47(15):4098-4109. Chinese. doi: 10.19540/j.cnki.cjcmm.20220208.201. PMID: 36046900.
14: Schripsema J, Caprini GP, van der Heijden R, Bino R, de Vos R, Dagnino D. Iridoids from Pentas lanceolata. J Nat Prod. 2007 Sep;70(9):1495-8. doi: 10.1021/np070116+. Epub 2007 Sep 8. PMID: 17824664.
15: Ilina T, Kashpur N, Granica S, Bazylko A, Shinkovenko I, Kovalyova A, Goryacha O, Koshovyi O. Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L. Plants (Basel). 2019 Nov 25;8(12):541. doi: 10.3390/plants8120541. PMID: 31775336; PMCID: PMC6963662.
16: Huyen LT, Thi Hien N, Viet Duy Anh N, Mai Thao V, Thi Kim Thoa N, Thi Minh Hang N. A new iridoid glucoside from the roots of Morinda officinalis. J Asian Nat Prod Res. 2023 May 26:1-6. doi: 10.1080/10286020.2023.2211510. Epub ahead of print. PMID: 37232117.
17: Milella L, Milazzo S, De Leo M, Vera Saltos MB, Faraone I, Tuccinardi T, Lapillo M, De Tommasi N, Braca A. α-Glucosidase and α-Amylase Inhibitors from Arcytophyllum thymifolium. J Nat Prod. 2016 Aug 26;79(8):2104-12. doi: 10.1021/acs.jnatprod.6b00484. Epub 2016 Aug 10. PMID: 27509358.
18: Zhao X, Wei J, Yang M. Simultaneous Analysis of Iridoid Glycosides and Anthraquinones in Morinda officinalis Using UPLC-QqQ-MS/MS and UPLC-Q/TOF-MSE. Molecules. 2018 May 3;23(5):1070. doi: 10.3390/molecules23051070. PMID: 29751518; PMCID: PMC6100404.
19: Wang M, Kikuzaki H, Csiszar K, Boyd CD, Maunakea A, Fong SF, Ghai G, Rosen RT, Nakatani N, Ho CT. Novel trisaccharide fatty acid ester identified from the fruits of Morinda citrifolia (Noni). J Agric Food Chem. 1999 Dec;47(12):4880-2. doi: 10.1021/jf990608v. PMID: 10606546.
20: Lee JH, Ku CH, Baek NI, Kim SH, Park HW, Kim DK. Phytochemical constituents from Diodia teres. Arch Pharm Res. 2004 Jan;27(1):40-3. doi: 10.1007/BF02980043. PMID: 14969336.