MedKoo Cat#: 572847 | Name: NUN 89065
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

NUN 89065, also known as N-(Azido-PEG2)-N-Fluorescein-PEG4-acid is a fluorescein dye derivative containing a terminal azide group and a terminal carboxylic acid. The azide group enables PEGylation via Click Chemistry. The terminal carboxylic acid can be reacted with primary amino groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. This product has no formal name at the moment. For the convenience of communication, a temporary code name was therefore proposed according to MedKoo Chemical Nomenclature (see web page: https://www.medkoo.com/page/naming).

Chemical Structure

NUN 89065
NUN 89065
CAS#2086689-06-5

Theoretical Analysis

MedKoo Cat#: 572847

Name: NUN 89065

CAS#: 2086689-06-5

Chemical Formula: C38H45N5O13S

Exact Mass: 811.2735

Molecular Weight: 811.86

Elemental Analysis: C, 56.22; H, 5.59; N, 8.63; O, 25.62; S, 3.95

Price and Availability

Size Price Availability Quantity
1mg USD 370.00
2mg USD 620.00
5mg USD 1,100.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
N-(Azido-PEG2)-N-Fluorescein-PEG4-acid; NUN 89065; NUN-89065; NUN89065
IUPAC/Chemical Name
1-azido-9-((3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)carbamothioyl)-3,6,12,15,18,21-hexaoxa-9-azatetracosan-24-oic acid
InChi Key
NJEUQTQEGQWTHD-UHFFFAOYSA-N
InChi Code
InChI=1S/C38H45N5O13S/c39-42-40-8-12-50-16-17-51-13-9-43(10-14-52-18-20-54-22-21-53-19-15-49-11-7-35(46)47)37(57)41-26-1-4-30-29(23-26)36(48)56-38(30)31-5-2-27(44)24-33(31)55-34-25-28(45)3-6-32(34)38/h1-6,23-25,44-45H,7-22H2,(H,41,57)(H,46,47)
SMILES Code
S=C(NC1=CC=C(C2(C(C=CC(O)=C3)=C3OC4=C2C=CC(O)=C4)OC5=O)C5=C1)N(CCOCCOCCN=[N+]=[N-])CCOCCOCCOCCOCCC(O)=O
Appearance
Solid powder
Purity
>97% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 811.86 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Sano K, Nakajima T, Miyazaki K, Ohuchi Y, Ikegami T, Choyke PL, Kobayashi H. Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes. Bioconjug Chem. 2013 May 15;24(5):811-6. doi: 10.1021/bc400050k. Epub 2013 May 3. PubMed PMID: 23600922; PubMed Central PMCID: PMC3674550. 2: Harrison E, Coulter JA, Dixon D. Gold nanoparticle surface functionalization: mixed monolayer versus hetero bifunctional peg linker. Nanomedicine (Lond). 2016 Apr;11(7):851-65. Review. PubMed PMID: 27021417. 3: Augusto MT, Hollmann A, Porotto M, Moscona A, Santos NC. Antiviral Lipopeptide-Cell Membrane Interaction Is Influenced by PEG Linker Length. Molecules. 2017 Jul 15;22(7). pii: E1190. doi: 10.3390/molecules22071190. PubMed PMID: 28714870; PubMed Central PMCID: PMC5776016. 4: Tuma R, Russell M, Rosendahl M, Thomas GJ Jr. Solution conformation of the extracellular domain of the human tumor necrosis factor receptor probed by Raman and UV-resonance Raman spectroscopy: structural effects of an engineered PEG linker. Biochemistry. 1995 Nov 21;34(46):15150-6. PubMed PMID: 7578129. 5: Kanazaki K, Sano K, Makino A, Yamauchi F, Takahashi A, Homma T, Ono M, Saji H. Feasibility of poly(ethylene glycol) derivatives as diagnostic drug carriers for tumor imaging. J Control Release. 2016 Mar 28;226:115-23. doi:10.1016/j.jconrel.2016.02.017. Epub 2016 Feb 8. PubMed PMID: 26869546.