1: Tang GL, Hou XF, Song YJ, Zhang M, Lan W, Meng S, Wang C, Pan HX, Cao C. Enzymology of Anthraquinone-γ-Pyrone Ring Formation in Complex Aromatic Polyketide Biosynthesis. Angew Chem Int Ed Engl. 2018 Aug 27. doi: 10.1002/anie.201806729. [Epub ahead of print] PubMed PMID: 30151879.
2: Nicolaou KC, Chen P, Zhu S, Cai Q, Erande RD, Li R, Sun H, Pulukuri KK, Rigol S, Aujay M, Sandoval J, Gavrilyuk J. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues. J Am Chem Soc. 2017 Nov 1;139(43):15467-15478. doi: 10.1021/jacs.7b08820. Epub 2017 Oct 20. PubMed PMID: 29052423.
3: Nicolaou KC, Cai Q, Sun H, Qin B, Zhu S. Total Synthesis of Trioxacarcins DC-45-A1, A, D, C, and C7″-epi-C and Full Structural Assignment of Trioxacarcin C. J Am Chem Soc. 2016 Mar 9;138(9):3118-24. doi: 10.1021/jacs.5b12687. Epub 2016 Feb 24. PubMed PMID: 26910506.
4: Yang K, Qi LH, Zhang M, Hou XF, Pan HX, Tang GL, Wang W, Yuan H. The SARP Family Regulator Txn9 and Two-Component Response Regulator Txn11 are Key Activators for Trioxacarcin Biosynthesis in Streptomyces bottropensis. Curr Microbiol. 2015 Oct;71(4):458-64. doi: 10.1007/s00284-015-0868-9. Epub 2015 Jul 16. PubMed PMID: 26178900.
5: Zhang M, Hou XF, Qi LH, Yin Y, Li Q, Pan HX, Chen XY, Tang GL. Biosynthesis of trioxacarcin revealing a different starter unit and complex tailoring steps for type II polyketide synthase. Chem Sci. 2015 Jun 1;6(6):3440-3447. doi: 10.1039/c5sc00116a. Epub 2015 Apr 7. PubMed PMID: 29511509; PubMed Central PMCID: PMC5659172.
6: Nicolaou KC, Cai Q, Qin B, Petersen MT, Mikkelsen RJ, Heretsch P. Total synthesis of trioxacarcin DC-45-A2. Angew Chem Int Ed Engl. 2015 Mar 2;54(10):3074-8. doi: 10.1002/anie.201410369. Epub 2015 Jan 12. PubMed PMID: 25583408.
7: Pröpper K, Dittrich B, Smaltz DJ, Magauer T, Myers AG. Crystalline guanine adducts of natural and synthetic trioxacarcins suggest a common biological mechanism and reveal a basis for the instability of trioxacarcin A. Bioorg Med Chem Lett. 2014 Sep 15;24(18):4410-4413. doi: 10.1016/j.bmcl.2014.08.016. Epub 2014 Aug 14. PubMed PMID: 25176186.
8: Magauer T, Smaltz DJ, Myers AG. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues. Nat Chem. 2013 Oct;5(10):886-93. doi: 10.1038/nchem.1746. Epub 2013 Sep 8. PubMed PMID: 24056347; PubMed Central PMCID: PMC4164168.
9: Švenda J, Hill N, Myers AG. A multiply convergent platform for the synthesis of trioxacarcins. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6709-14. doi: 10.1073/pnas.1015257108. Epub 2011 Jan 18. PubMed PMID: 21245350; PubMed Central PMCID: PMC3084144.
10: Pfoh R, Laatsch H, Sheldrick GM. Crystal structure of trioxacarcin A covalently bound to DNA. Nucleic Acids Res. 2008 Jun;36(10):3508-14. doi: 10.1093/nar/gkn245. Epub 2008 May 3. PubMed PMID: 18453630; PubMed Central PMCID: PMC2425490.
11: Fitzner A, Frauendorf H, Laatsch H, Diederichsen U. Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. Anal Bioanal Chem. 2008 Feb;390(4):1139-47. doi: 10.1007/s00216-007-1737-6. Epub 2008 Jan 22. PubMed PMID: 18210096; PubMed Central PMCID: PMC2228378.
12: Maskey RP, Sevvana M, Usón I, Helmke E, Laatsch H. Gutingimycin: a highly complex metabolite from a marine streptomycete. Angew Chem Int Ed Engl. 2004 Feb 27;43(10):1281-3. PubMed PMID: 14991799.
13: Fujimoto K, Morimoto M. Antitumor activity of trioxacarcin C. J Antibiot (Tokyo). 1983 Sep;36(9):1216-21. PubMed PMID: 6195142.
14: Tomita F, Tamaoki T, Morimoto M, Fujimoto K. Trioxacarcins, novel antitumor antibiotics. I. Producing organism, fermentation and biological activities. J Antibiot (Tokyo). 1981 Dec;34(12):1519-24. PubMed PMID: 6895890.
15: Tamaoki T, Shirahata K, Iida T, Tomita F. Trioxacarcins, novel antitumor antibiotics. II. Isolation, physico-chemical properties and mode of action. J Antibiot (Tokyo). 1981 Dec;34(12):1525-30. PubMed PMID: 6800996.