1: Brandhorst TT, Klein BS. Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food Chem Toxicol. 2019 Jan;123:561-565. doi: 10.1016/j.fct.2018.11.037. Epub 2018 Nov 17. PMID: 30458269; PMCID: PMC6322420.
2: Schnabel G, Tan Q, Schneider V, Ishii H. Inherent tolerance of Colletotrichum gloeosporioides to fludioxonil. Pestic Biochem Physiol. 2021 Feb;172:104767. doi: 10.1016/j.pestbp.2020.104767. Epub 2020 Dec 29. PMID: 33518054.
3: Wang YF, Hao FM, Zhou HH, Chen JB, Su HC, Yang F, Cai YY, Li GL, Zhang M, Zhou F. Exploring Potential Mechanisms of Fludioxonil Resistance in Fusarium oxysporum f. sp. melonis. J Fungi (Basel). 2022 Aug 11;8(8):839. doi: 10.3390/jof8080839. PMID: 36012827; PMCID: PMC9409840.
4: Graiet I, Hamdi H, Abid-Essefi S, Eyer J. Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol. 2022 Dec;170:113464. doi: 10.1016/j.fct.2022.113464. Epub 2022 Oct 11. PMID: 36228901.
5: Lee GH, Hwang KA, Choi KC. Effects of Fludioxonil on the Cell Growth and Apoptosis in T and B Lymphocytes. Biomolecules. 2019 Sep 18;9(9):500. doi: 10.3390/biom9090500. PMID: 31540454; PMCID: PMC6770511.
6: Wen Z, Wang J, Jiao C, Shao W, Ma Z. Biological and molecular characterizations of field fludioxonil-resistant isolates of Fusarium graminearum. Pestic Biochem Physiol. 2022 Jun;184:105101. doi: 10.1016/j.pestbp.2022.105101. Epub 2022 Apr 19. PMID: 35715040.
7: Zhou F, Cui YX, Wang BL, Zhou YD, Li SW, Zhang YT, Zhang K, Chen ZY, Hu HY, Li CW. Baseline Sensitivity and Potential Resistance Mechanisms for Fusarium pseudograminearum to Fludioxonil. Plant Dis. 2022 Aug;106(8):2138-2144. doi: 10.1094/PDIS-12-21-2626-RE. Epub 2022 Jul 17. PMID: 35100030.
8: Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. Sci Total Environ. 2022 Sep 10;838(Pt 2):156069. doi: 10.1016/j.scitotenv.2022.156069. Epub 2022 May 20. PMID: 35605851.
9: Bersching K, Jacob S. The Molecular Mechanism of Fludioxonil Action Is Different to Osmotic Stress Sensing. J Fungi (Basel). 2021 May 17;7(5):393. doi: 10.3390/jof7050393. PMID: 34067802; PMCID: PMC8156855.
10: Han X, Zhao H, Ren W, Lv C, Chen C. Resistance risk assessment for fludioxonil in Bipolaris maydis. Pestic Biochem Physiol. 2017 Jun;139:32-39. doi: 10.1016/j.pestbp.2017.04.006. Epub 2017 Apr 21. PMID: 28595919.
11: Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pestic Biochem Physiol. 2019 May;156:123-128. doi: 10.1016/j.pestbp.2019.02.011. Epub 2019 Feb 12. PMID: 31027571.
12: Dowling M, Gelain J, May De Mio LL, Schnabel G. Characterization of High Fludioxonil Resistance in Botrytis cinerea Isolates from Calibrachoa Flowers. Phytopathology. 2021 Mar;111(3):478-484. doi: 10.1094/PHYTO-07-20-0268-R. Epub 2021 Feb 10. PMID: 33044131.
13: Li Y, He P, Tian C, Wang Y. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides. Fungal Genet Biol. 2020 Feb;135:103289. doi: 10.1016/j.fgb.2019.103289. Epub 2019 Nov 5. PMID: 31704368.
14: Lee SM, Ko EB, Go RE, Lee HK, Choi KC. Effect of the phenylpyrrole fungicide fludioxonil on cell proliferation and cardiac differentiation in mouse embryonic stem cells. Reprod Toxicol. 2021 Sep;104:76-84. doi: 10.1016/j.reprotox.2021.07.006. Epub 2021 Jul 17. PMID: 34280493.
15: Go RE, Kim CW, Jeon SY, Byun YS, Jeung EB, Nam KH, Choi KC. Fludioxonil induced the cancer growth and metastasis via altering epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in cellular and xenografted breast cancer models. Environ Toxicol. 2017 Apr;32(4):1439-1454. doi: 10.1002/tox.22337. Epub 2016 Aug 19. PMID: 27539251.
16: Hu MJ, Cosseboom S, Schnabel G. atrB-Associated Fludioxonil Resistance in Botrytis fragariae Not Linked to Mutations in Transcription Factor mrr1. Phytopathology. 2019 May;109(5):839-846. doi: 10.1094/PHYTO-09-18-0341-R. Epub 2019 Mar 25. PMID: 30543488.
17: Taiwo AO, Harper LA, Derbyshire MC. Impacts of fludioxonil resistance on global gene expression in the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics. 2021 Jan 30;22(1):91. doi: 10.1186/s12864-021-07402-x. PMID: 33516198; PMCID: PMC7847169.
18: Oiki S, Yaguchi T, Urayama SI, Hagiwara D. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species. PLoS One. 2022 Jan 31;17(1):e0262521. doi: 10.1371/journal.pone.0262521. PMID: 35100282; PMCID: PMC8803201.
19: Liu M, Peng J, Wang X, Zhang W, Zhou Y, Wang H, Li X, Yan J, Duan L. Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms. Int J Mol Sci. 2023 Jan 4;24(2):988. doi: 10.3390/ijms24020988. PMID: 36674501; PMCID: PMC9861754.
20: EFSA (European Food Safety Authority); Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Giner G, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Ruocco S, Santos M, Scarlato AP, Theobald A, Vagenende B, Verani A. Setting of import tolerances for fludioxonil in sugar beet roots and bananas. EFSA J. 2021 Nov 10;19(11):e06919. doi: 10.2903/j.efsa.2021.6919. PMID: 34795798; PMCID: PMC8579863.