MedKoo Cat#: 563782 | Name: Delphinidin Chloride
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Delphinidin Chloride is an inhibitor of BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

Chemical Structure

Delphinidin Chloride
Delphinidin Chloride
CAS#528-53-0

Theoretical Analysis

MedKoo Cat#: 563782

Name: Delphinidin Chloride

CAS#: 528-53-0

Chemical Formula: C15H11ClO7

Exact Mass: 338.0193

Molecular Weight: 338.70

Elemental Analysis: C, 53.19; H, 3.27; Cl, 10.47; O, 33.07

Price and Availability

Size Price Availability Quantity
5mg USD 350.00 2 Weeks
10mg USD 650.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Delphinidin Chloride; Delphinidine; Delphinidol; Ephdine;
IUPAC/Chemical Name
2-(3,4,5-Trihydroxyphenyl)chromenylium-3,5,7-triol chloride
InChi Key
FFNDMZIBVDSQFI-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10O7.ClH/c16-7-3-9(17)8-5-12(20)15(22-13(8)4-7)6-1-10(18)14(21)11(19)2-6;/h1-5H,(H5-,16,17,18,19,20,21);1H
SMILES Code
OC1=C(C2=CC(O)=C(O)C(O)=C2)[O+]=C3C=C(O)C=C(O)C3=C1.[Cl-]
Appearance
Solid powder
Purity
>97% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Delphinidin Chloride is a natural anthocyanin plant pigment.
Product Data
Biological target:
Delphinidin chloride, an anthocyanidin, shows endothelium-dependent vasorelaxation as well as modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells.
In vitro activity:
Neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) and delphinidin in vitro. The cardiac hypertrophyrelated increase in cell size after Ang II stimulation was blocked by delphinidin (50 μM) (Figure 4B). Furthermore, delphinidin (50 μM) significantly prevented Ang II-induced increases in Anp, Bnp and β-MHC mRNA expression levels (Figure 4C). In addition, DHE and DCF-DA fluorescence images showed that the marked increase in ROS production in cardiomyocytes in response to Ang II stimulation was attenuated by delphinidin (50 μM) (Figure 4D and 4E). Consistent with these findings, delphinidin (50 μM) reduced the increased myocardial NOX activity after Ang II stimulation (Figure 4F). Delphinidin significantly blocked the increase in cell proliferation induced by Ang II, judging by the results of cell counting and CCK-8 assays (Supplementary Figure 2A, 2B). Moreover, the results of scratch wound and Transwell migration assays suggested that delphinidin administration abrogated the increased cell migration induced by Ang II stimulation (Supplementary Figure 2C, 2D). Furthermore, the administration of delphinidin dramatically suppressed Ang II-induced increases in the mRNA levels of the fibrotic markers collagen I, collagen III, and CTGF (Supplementary Figure 2E). In summary, all the above results showed that delphinidin protected against pathological cell growth, oxidative stress and activation in cardiomyocytes and cardiac fibroblasts induced by Ang II in vitro. Reference: Aging (Albany NY). 2020 Mar 31; 12(6): 5362–5383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138591/
In vivo activity:
To determine the effect of delphinidin on cardiac hypertrophy in vivo, wild-type (WT) mice underwent TAC or sham operation; after 3 days, the mice were assigned to receive delphinidin or DMSO for 8 weeks. Delphinidin at the highest dosage used (15 mg/kg/day) significantly reversed TAC-induced cardiac hypertrophy, which manifested as decreased heart weight/body weight (HW/BW) and heart weight/tibia length (HW/TL) ratios (Figure 2A). In addition, the decreased left ventricular end-systolic dimension (LVESd) and left ventricular end-diastolic dimension (LVEDd) and increased left ventricular ejection fraction (LVEF) and left ventricular shortening rate (LVFS) compared with those of the sham surgery group further confirmed the effect of delphinidin at the high dosage on cardiac function (Figure 2B). Moreover, marked myocyte hypertrophy was observed at 8 weeks after surgery. Consistently, TAC increased myocardial mRNA expression of hypertrophic markers atrial natriuretic factor (Anp), brain natriuretic peptide (Bnp), and βmyosin heavy chain (β-MHC) in WT mice, but these changes were ameliorated by delphinidin treatment at the high dosage, but not by delphinidin at the low dosage (Figure 2F). These results suggested that treatment with delphinidin at the high dosage could inhibit pathological hypertrophy, oxidative stress, and cardiac dysfunction caused by pressure overload. Reference: Aging (Albany NY). 2020 Mar 31; 12(6): 5362–5383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138591/
Solvent mg/mL mM
Solubility
DMSO 46.0 135.81
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 338.70 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Chen Y, Ge Z, Huang S, Zhou L, Zhai C, Chen Y, Hu Q, Cao W, Weng Y, Li Y. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging (Albany NY). 2020 Mar 25;12(6):5362-5383. doi: 10.18632/aging.102956. Epub 2020 Mar 25. PMID: 32209725; PMCID: PMC7138591. 2. Kang SH, Bak DH, Chung BY, Bai HW, Kang BS. Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer. Korean J Physiol Pharmacol. 2020 Sep 1;24(5):413-422. doi: 10.4196/kjpp.2020.24.5.413. PMID: 32830148; PMCID: PMC7445475. 3. Han B, Peng X, Cheng D, Zhu Y, Du J, Li J, Yu X. Delphinidin suppresses breast carcinogenesis through the HOTAIR/microRNA34a axis. Cancer Sci. 2019 Oct;110(10):3089-3097. doi: 10.1111/cas.14133. Epub 2019 Sep 16. PMID: 31325197; PMCID: PMC6778627
In vitro protocol:
1. Chen Y, Ge Z, Huang S, Zhou L, Zhai C, Chen Y, Hu Q, Cao W, Weng Y, Li Y. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging (Albany NY). 2020 Mar 25;12(6):5362-5383. doi: 10.18632/aging.102956. Epub 2020 Mar 25. PMID: 32209725; PMCID: PMC7138591. 2. Kang SH, Bak DH, Chung BY, Bai HW, Kang BS. Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer. Korean J Physiol Pharmacol. 2020 Sep 1;24(5):413-422. doi: 10.4196/kjpp.2020.24.5.413. PMID: 32830148; PMCID: PMC7445475.
In vivo protocol:
1. Chen Y, Ge Z, Huang S, Zhou L, Zhai C, Chen Y, Hu Q, Cao W, Weng Y, Li Y. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging (Albany NY). 2020 Mar 25;12(6):5362-5383. doi: 10.18632/aging.102956. Epub 2020 Mar 25. PMID: 32209725; PMCID: PMC7138591. 2. Han B, Peng X, Cheng D, Zhu Y, Du J, Li J, Yu X. Delphinidin suppresses breast carcinogenesis through the HOTAIR/microRNA34a axis. Cancer Sci. 2019 Oct;110(10):3089-3097. doi: 10.1111/cas.14133. Epub 2019 Sep 16. PMID: 31325197; PMCID: PMC6778627.
1: Yoshino Y, Yuan B, Okusumi S, Aoyama R, Murota R, Kikuchi H, Takagi N, Toyoda H. Enhanced cytotoxic effects of arsenite in combination with anthocyanidin compound, delphinidin, against a human leukemia cell line, HL-60. Chem Biol Interact. 2018 Aug 17;294:9-17. doi: 10.1016/j.cbi.2018.08.008. [Epub ahead of print] PubMed PMID: 30125548. 2: Parra-Vargas M, Sandoval-Rodriguez A, Rodriguez-Echevarria R, Dominguez-Rosales JA, Santos-Garcia A, Armendariz-Borunda J. Delphinidin Ameliorates Hepatic Triglyceride Accumulation in Human HepG2 Cells, but Not in Diet-Induced Obese Mice. Nutrients. 2018 Aug 10;10(8). pii: E1060. doi: 10.3390/nu10081060. PubMed PMID: 30103390. 3: Márquez-Rodríguez AS, Grajeda-Iglesias C, Sánchez-Bojorge NA, Figueroa-Espinoza MC, Rodríguez-Valdez LM, Fuentes-Montero ME, Salas E. Theoretical Characterization by Density Functional Theory (DFT) of Delphinidin 3-O-Sambubioside and Its Esters Obtained by Chemical Lipophilization. Molecules. 2018 Jun 29;23(7). pii: E1587. doi: 10.3390/molecules23071587. PubMed PMID: 29966272. 4: Daveri E, Cremonini E, Mastaloudis A, Hester SN, Wood SM, Waterhouse AL, Anderson M, Fraga CG, Oteiza PI. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol. 2018 Sep;18:16-24. doi: 10.1016/j.redox.2018.05.012. Epub 2018 May 30. PubMed PMID: 29890336; PubMed Central PMCID: PMC6035912. 5: Chen J, Zhu Y, Zhang W, Peng X, Zhou J, Li F, Han B, Liu X, Ou Y, Yu X. Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC Cancer. 2018 Mar 27;18(1):342. doi: 10.1186/s12885-018-4231-y. PubMed PMID: 29587684; PubMed Central PMCID: PMC5870693. 6: Kang HM, Park BS, Kang HK, Park HR, Yu SB, Kim IR. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol. 2018 Jun;33(6):640-649. doi: 10.1002/tox.22548. Epub 2018 Feb 16. PubMed PMID: 29451351; PubMed Central PMCID: PMC5969316. 7: Kim HM, Kim SH, Kang BS. Radioprotective effects of delphinidin on normal human lung cells against proton beam exposure. Nutr Res Pract. 2018 Feb;12(1):41-46. doi: 10.4162/nrp.2018.12.1.41. Epub 2018 Jan 18. PubMed PMID: 29399295; PubMed Central PMCID: PMC5792255. 8: Casati L, Pagani F, Fibiani M, Lo Scalzo R, Sibilia V. Potential of delphinidin-3-rutinoside extracted from Solanum melongena L. as promoter of osteoblastic MC3T3-E1 function and antagonist of oxidative damage. Eur J Nutr. 2018 Jan 25. doi: 10.1007/s00394-018-1618-0. [Epub ahead of print] PubMed PMID: 29372310. 9: Lee DY, Park YJ, Hwang SC, Kim KD, Moon DK, Kim DH. Cytotoxic effects of delphinidin in human osteosarcoma cells. Acta Orthop Traumatol Turc. 2018 Jan;52(1):58-64. doi: 10.1016/j.aott.2017.11.011. Epub 2017 Dec 28. PubMed PMID: 29290536. 10: Wang CH, Zhu LL, Ju KF, Liu JL, Li KP. Anti-inflammatory effect of delphinidin on intramedullary spinal pressure in a spinal cord injury rat model. Exp Ther Med. 2017 Dec;14(6):5583-5588. doi: 10.3892/etm.2017.5206. Epub 2017 Sep 27. PubMed PMID: 29285096; PubMed Central PMCID: PMC5740566. 11: Aichinger G, Puntscher H, Beisl J, Kütt ML, Warth B, Marko D. Delphinidin protects colon carcinoma cells against the genotoxic effects of the mycotoxin altertoxin II. Toxicol Lett. 2018 Mar 1;284:136-142. doi: 10.1016/j.toxlet.2017.12.002. Epub 2017 Dec 5. PubMed PMID: 29217480. 12: Lim WC, Kim H, Kim YJ, Park SH, Song JH, Lee KH, Lee IH, Lee YK, So KA, Choi KC, Ko H. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells. Bioorg Med Chem Lett. 2017 Dec 1;27(23):5337-5343. doi: 10.1016/j.bmcl.2017.09.024. Epub 2017 Sep 18. PubMed PMID: 29122484. 13: Goszcz K, Deakin SJ, Duthie GG, Stewart D, Megson IL. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. Oxid Med Cell Longev. 2017;2017:9260701. doi: 10.1155/2017/9260701. Epub 2017 Sep 7. PubMed PMID: 29081896; PubMed Central PMCID: PMC5610832. 14: Dayoub O, Le Lay S, Soleti R, Clere N, Hilairet G, Dubois S, Gagnadoux F, Boursier J, Martínez MC, Andriantsitohaina R. Estrogen receptor α/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Sci Rep. 2017 Aug 24;7(1):9378. doi: 10.1038/s41598-017-09933-4. PubMed PMID: 28839227; PubMed Central PMCID: PMC5570903. 15: Tani T, Nishikawa S, Kato M, Tsuda T. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci Nutr. 2017 Apr 7;5(4):929-933. doi: 10.1002/fsn3.478. eCollection 2017 Jul. PubMed PMID: 28748082; PubMed Central PMCID: PMC5520870. 16: Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, Garcia-Moruno E, Saiz JC. Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front Microbiol. 2017 Jul 11;8:1314. doi: 10.3389/fmicb.2017.01314. eCollection 2017. PubMed PMID: 28744282; PubMed Central PMCID: PMC5504193. 17: Lim W, Song G. Inhibitory effects of delphinidin on the proliferation of ovarian cancer cells via PI3K/AKT and ERK 1/2 MAPK signal transduction. Oncol Lett. 2017 Jul;14(1):810-818. doi: 10.3892/ol.2017.6232. Epub 2017 May 23. PubMed PMID: 28693237; PubMed Central PMCID: PMC5494655. 18: Hidalgo J, Teuber S, Morera FJ, Ojeda C, Flores CA, Hidalgo MA, Núñez L, Villalobos C, Burgos RA. Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40. Int J Mol Sci. 2017 Apr 5;18(4). pii: E750. doi: 10.3390/ijms18040750. PubMed PMID: 28379159; PubMed Central PMCID: PMC5412335. 19: Chen J, Zhou J, Li F, Zhu Y, Zhang W, Yu X. [Delphinidin induces autophagy in HER-2+ breast cancer cells via inhibition of AKT/mTOR pathway]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2017 Mar 28;42(3):264-270. doi: 10.11817/j.issn.1672-7347.2017.03.005. Chinese. PubMed PMID: 28364098. 20: Tatsuzawa F, Tanikawa N, Nakayama M. Red-purple flower color and delphinidin-type pigments in the flowers of Pueraria lobata (Leguminosae). Phytochemistry. 2017 May;137:52-56. doi: 10.1016/j.phytochem.2017.02.004. Epub 2017 Feb 9. PubMed PMID: 28189342.