MedKoo Cat#: 592791 | Name: Sciadopitysin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Sciadopitysin is a biflavonoid that reduces cytotoxicity induced by amyloid-β (1-42) (Aβ42). Sciadopitysin decreases methylglyoxal-induced insulin secretion, production of reactive oxygen species (ROS), cardiolipin peroxidation, and cytotoxicity in RIN-m5F pancreatic β-cells. It inhibits P-glycoprotein (P-gp) and increases cellular toxicity of paraquat and paclitaxel in MDR1-MDCKII cells. Sciadopitysin inhibits RANKL-induced mRNA expression of the osteoclast-specific genes CTSK, TRAP, and MMP-9, activation of NF-κB, and osteoclastogenesis in a mouse model of LPS-induced bone loss.

Chemical Structure

Sciadopitysin
Sciadopitysin
CAS#521-34-6

Theoretical Analysis

MedKoo Cat#: 592791

Name: Sciadopitysin

CAS#: 521-34-6

Chemical Formula: C33H24O10

Exact Mass: 580.1369

Molecular Weight: 580.55

Elemental Analysis: C, 68.27; H, 4.17; O, 27.56

Price and Availability

Size Price Availability Quantity
5mg USD 350.00
10mg USD 600.00
25mg USD 1,000.00
50mg USD 1,750.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Sciadopitysin; NSC 45108; NSC-45108; NSC45108
IUPAC/Chemical Name
5,7-Dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl)-2-(4-methoxyphenyl)-4-benzopyrone
InChi Key
YCXRBCHEOFVYEN-UHFFFAOYSA-N
InChi Code
InChI=1S/C33H24O10/c1-39-18-7-4-16(5-8-18)27-15-25(38)32-23(36)13-22(35)30(33(32)43-27)20-10-17(6-9-26(20)41-3)28-14-24(37)31-21(34)11-19(40-2)12-29(31)42-28/h4-15,34-36H,1-3H3
SMILES Code
O=C1C=C(C2=CC=C(OC)C=C2)OC3=C(C4=CC(C5=CC(C6=C(O)C=C(OC)C=C6O5)=O)=CC=C4OC)C(O)=CC(O)=C13
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Sciadopitysin decreases methylglyoxal-induced insulin secretion, production of reactive oxygen species (ROS), cardiolipin peroxidation, and cytotoxicity in RIN-m5F pancreatic β-cells. It inhibits P-glycoprotein (P-gp) and increases cellular toxicity of paraquat and paclitaxel in MDR1-MDCKII cells. Sciadopitysin inhibits RANKL-induced mRNA expression of the osteoclast-specific genes CTSK, TRAP, and MMP-9, activation of NF-κB, and osteoclastogenesis in a mouse model of LPS-induced bone loss.
In vitro activity:
In this study, sciadopitysin protected AC16 cardiomyocytes against high glucose-induced oxidative stress and apoptosis, illustrating sciadopitysin’s potential in diabetes treatment. Sciadopitysin inhibited high glucose-induced oxidative stress. Sciadopitysin suppressed high glucose-induced apoptosis, increased caspase-3/7 activity, and Cyt C expression in AC16 cells. Sciadopitysin activated the PI3K/PKB/GSK-3β pathway under high glucose stimulation in AC16 cells. Reference: J Biochem Mol Toxicol. 2021 Oct;35(10):e22887. https://pubmed.ncbi.nlm.nih.gov/34392578/
In vivo activity:
This study demonstrated that sciadopitysin possessed a significant potential to avert paraquat-induced testicular dysfunction (paraquat is a herbicide that has ability to induce testicular toxicity by producing reactive oxygen species). Due to its anti-apoptotic, androgenic, anti-oxidant and anti-inflammatory nature, the supplementation of sciadopitysin with paraquat significantly reduced the adverse effects of paraquat in the testes of albino rats. Reference: Sci Rep. 2023 Nov 13;13(1):19753. https://pubmed.ncbi.nlm.nih.gov/37957289/
Solvent mg/mL mM
Solubility
DMSO 20.0 34.45
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 580.55 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Suh KS, Chon S, Jung WW, Choi EM. Protective effects of sciadopitysin against methylglyoxal-induced degeneration in neuronal SK-N-MC cells. J Appl Toxicol. 2022 Feb;42(2):274-284. doi: 10.1002/jat.4211. Epub 2021 Jun 7. PMID: 34102705. 2. Zhang C, Yu H, Yang H, Liu B. Activation of PI3K/PKB/GSK-3β signaling by sciadopitysin protects cardiomyocytes against high glucose-induced oxidative stress and apoptosis. J Biochem Mol Toxicol. 2021 Oct;35(10):e22887. doi: 10.1002/jbt.22887. Epub 2021 Aug 15. PMID: 34392578. 3. Ijaz MU, Qamer M, Hamza A, Ahmed H, Afsar T, Abulmeaty M, Ayub A, Razak S. Sciadopitysin mitigates spermatological and testicular damage instigated by paraquat administration in male albino rats. Sci Rep. 2023 Nov 13;13(1):19753. doi: 10.1038/s41598-023-46898-z. PMID: 37957289; PMCID: PMC10643627. 4. Cai Y, Li Y. Protective Effect of Sciadopitysin against Isoproternol-Induced Myocardial Infarction in Rats. Pharmacology. 2020;105(5-6):272-280. doi: 10.1159/000504395. Epub 2019 Nov 27. PMID: 31775147.
In vitro protocol:
1. Suh KS, Chon S, Jung WW, Choi EM. Protective effects of sciadopitysin against methylglyoxal-induced degeneration in neuronal SK-N-MC cells. J Appl Toxicol. 2022 Feb;42(2):274-284. doi: 10.1002/jat.4211. Epub 2021 Jun 7. PMID: 34102705. 2. Zhang C, Yu H, Yang H, Liu B. Activation of PI3K/PKB/GSK-3β signaling by sciadopitysin protects cardiomyocytes against high glucose-induced oxidative stress and apoptosis. J Biochem Mol Toxicol. 2021 Oct;35(10):e22887. doi: 10.1002/jbt.22887. Epub 2021 Aug 15. PMID: 34392578.
In vivo protocol:
1. Ijaz MU, Qamer M, Hamza A, Ahmed H, Afsar T, Abulmeaty M, Ayub A, Razak S. Sciadopitysin mitigates spermatological and testicular damage instigated by paraquat administration in male albino rats. Sci Rep. 2023 Nov 13;13(1):19753. doi: 10.1038/s41598-023-46898-z. PMID: 37957289; PMCID: PMC10643627. 2. Cai Y, Li Y. Protective Effect of Sciadopitysin against Isoproternol-Induced Myocardial Infarction in Rats. Pharmacology. 2020;105(5-6):272-280. doi: 10.1159/000504395. Epub 2019 Nov 27. PMID: 31775147.
1: De L, Xing N, Du Q, Guo S, Wang S. Investigating the anti-lung cancer properties of Zhuang medicine Cycas revoluta Thunb. leaves targeting ion channels and transporters through a comprehensive strategy. Comput Biol Chem. 2024 Oct;112:108156. doi: 10.1016/j.compbiolchem.2024.108156. Epub 2024 Jul 19. PMID: 39067352. 2: Lian H, Xiong Y, Zhao G, Yi M, Wang J, Liu H, Zhou Y. Network Pharmacology and Bioinformatics Analysis to Identify the Molecular Targets and its Biological Mechanisms of Sciadopitysin against Glioblastoma. J Cancer. 2024 May 13;15(12):3675-3683. doi: 10.7150/jca.94202. PMID: 38911393; PMCID: PMC11190769. 3: Li YJ, Guo Q, Ye MS, Cai G, Xiao WF, Deng S, Xiao Y. YBX1 promotes type H vessel-dependent bone formation in an m5C-dependent manner. JCI Insight. 2024 Jan 11;9(4):e172345. doi: 10.1172/jci.insight.172345. PMID: 38385749; PMCID: PMC11143935. 4: Ijaz MU, Qamer M, Hamza A, Ahmed H, Afsar T, Abulmeaty M, Ayub A, Razak S. Sciadopitysin mitigates spermatological and testicular damage instigated by paraquat administration in male albino rats. Sci Rep. 2023 Nov 13;13(1):19753. doi: 10.1038/s41598-023-46898-z. PMID: 37957289; PMCID: PMC10643627. 5: Jurčević Šangut I, Šarkanj B, Karalija E, Šamec D. A Comparative Analysis of Radical Scavenging, Antifungal and Enzyme Inhibition Activity of 3'-8″-Biflavones and Their Monomeric Subunits. Antioxidants (Basel). 2023 Oct 12;12(10):1854. doi: 10.3390/antiox12101854. PMID: 37891933; PMCID: PMC10604771. 6: Zhang M, Hou XD, Liu W, Wang L, Jiang MF, Hou J, Tang H, Ge GB. Uncovering the anti-obesity constituents in Ginkgo biloba extract and deciphering their synergistic effects. Fitoterapia. 2023 Dec;171:105669. doi: 10.1016/j.fitote.2023.105669. Epub 2023 Sep 6. PMID: 37683877. 7: Zhou R, Huang Y, Feng X, Zhou R, Wang L, Xie G, Xiao Y, Zhou H. Decreased YB-1 expression denervates brown adipose tissue and contributes to age-related metabolic dysfunction. Cell Prolif. 2024 Jan;57(1):e13520. doi: 10.1111/cpr.13520. Epub 2023 Jun 15. PMID: 37321837; PMCID: PMC10771110. 8: V H P, Kuruburu MG, M K J, N AS, Taha Babakr A, Sreenivasan R, Ramu R, Madhunapantula SV. Bioactive profiling and evaluation of anti-proliferative and anti-cancerous properties of Shivagutika, an Indian polyherbal formulation synchronizing in vitro and in silico approaches. Front Chem. 2023 May 17;11:1195209. doi: 10.3389/fchem.2023.1195209. PMID: 37265589; PMCID: PMC10230648. 9: Zhang YN, Zhu GH, Liu W, Xiong Y, Hu Q, Zhuang XY, Jia GH, Zhang WD, Ge GB. Discovery and characterization of the covalent SARS-CoV-2 3CLpro inhibitors from Ginkgo biloba extract via integrating chemoproteomic and biochemical approaches. Phytomedicine. 2023 Jun;114:154796. doi: 10.1016/j.phymed.2023.154796. Epub 2023 Mar 29. PMID: 37037086; PMCID: PMC10052880. 10: Xiao Y, Cai GP, Feng X, Li YJ, Guo WH, Guo Q, Huang Y, Su T, Li CJ, Luo XH, Zheng YJ, Yang M. Splicing factor YBX1 regulates bone marrow stromal cell fate during aging. EMBO J. 2023 May 2;42(9):e111762. doi: 10.15252/embj.2022111762. Epub 2023 Mar 21. PMID: 36943004; PMCID: PMC10152142. 11: Aoki-Utsubo C, Indrasetiawan P, Fukano K, Muramatsu M, Artanti N, Hanafi M, Hotta H, Kameoka M. Amentoflavone inhibits hepatitis B virus infection via the suppression of preS1 binding to host cells. Microbiol Immunol. 2023 Jun;67(6):281-292. doi: 10.1111/1348-0421.13064. Epub 2023 Apr 4. PMID: 36929353. 12: Bai J, Zhang C. Metabolic interaction between biflavonoids in Ginkgo biloba leaves and tacrolimus. Biopharm Drug Dispos. 2023 Apr;44(2):157-164. doi: 10.1002/bdd.2350. Epub 2023 Mar 11. PMID: 36840704. 13: Yang J, Deng Y, Zhang M, Feng S, Peng S, Yang S, Liu P, Cai G, Ge G. Construction and Manipulation of Serial Gradient Dilution Array on a Microfluidic Slipchip for Screening and Characterizing Inhibitors against Human Pancreatic Lipase. Biosensors (Basel). 2023 Feb 15;13(2):274. doi: 10.3390/bios13020274. PMID: 36832040; PMCID: PMC9954273. 14: Kovač Tomas M, Jurčević I, Šamec D. Tissue-Specific Profiling of Biflavonoids in Ginkgo (Ginkgo biloba L.). Plants (Basel). 2022 Dec 28;12(1):147. doi: 10.3390/plants12010147. PMID: 36616276; PMCID: PMC9824678. 15: Chen X, Zhao T, Du J, Guan X, Yu H, Wang D, Wang C, Meng Q, Yao J, Sun H, Liu K, Wu J. Comparative Inhibitory Effects of Natural Biflavones from Ginkgo against Human CYP1B1 in Recombinant Enzymes and MCF-7 Cells. Planta Med. 2023 Apr;89(4):397-407. doi: 10.1055/a-1936-4807. Epub 2022 Sep 5. PMID: 36064115. 16: Demehin AA, Thamnarak W, Lamtha T, Chatwichien J, Eurtivong C, Choowongkomon K, Chainok K, Ruchirawat S, Thasana N. Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. Phytochemistry. 2022 Nov;203:113374. doi: 10.1016/j.phytochem.2022.113374. Epub 2022 Aug 11. PMID: 35964804. 17: Dey D, Hossain R, Biswas P, Paul P, Islam MA, Ema TI, Gain BK, Hasan MM, Bibi S, Islam MT, Rahman MA, Kim B. Amentoflavone derivatives significantly act towards the main protease (3CLPRO/MPRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol Divers. 2023 Apr;27(2):857-871. doi: 10.1007/s11030-022-10459-9. Epub 2022 May 31. PMID: 35639226; PMCID: PMC9153225. 18: Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo (Ginkgo biloba L.). Plants (Basel). 2022 May 23;11(10):1381. doi: 10.3390/plants11101381. PMID: 35631806; PMCID: PMC9143338. 19: Pang HL, Zhu GH, Zhou QH, Ai CZ, Zhu YD, Wang P, Dou TY, Xia YL, Ma H, Ge GB. Discovery and Characterization of the Key Constituents in Ginkgo biloba Leaf Extract With Potent Inhibitory Effects on Human UDP- Glucuronosyltransferase 1A1. Front Pharmacol. 2022 Feb 21;13:815235. doi: 10.3389/fphar.2022.815235. PMID: 35264954; PMCID: PMC8899474. 20: Choi SR, Lee MY, Kim SA, Oh J, Hyun DW, Lee S, Lee BH, Cho JY, Lee CH. Nontargeted Metabolomics as a Screening Tool for Estimating Bioactive Metabolites in the Extracts of 50 Indigenous Korean Plants. Metabolites. 2021 Aug 30;11(9):585. doi: 10.3390/metabo11090585. PMID: 34564401; PMCID: PMC8468114.