1: Harada K, Irie S, Ohnishi M, Kataoka Y. Assessment of the Usefulness of Cefapirin and Cefalonium Disks for Susceptibility Testing of Staphylococcus aureus Isolates from Bovine Mastitis. Antibiotics (Basel). 2020 Apr 21;9(4):197. doi: 10.3390/antibiotics9040197. PMID: 32326215; PMCID: PMC7235829.
2: Li S, Guo C, Meng L, Huang X. [Determination of cefalonium residue in milk by high performance liquid chromatography-tandem mass spectrometry]. Se Pu. 2014 May;32(5):519-23. Chinese. doi: 10.3724/sp.j.1123.2013.12028. PMID: 25185313.
3: Jung YS, Kim DB, Nam TG, Seo D, Yoo M. Identification and quantification of multi-class veterinary drugs and their metabolites in beef using LC-MS/MS. Food Chem. 2022 Jul 15;382:132313. doi: 10.1016/j.foodchem.2022.132313. Epub 2022 Feb 2. PMID: 35158273.
4: Demon D, Ludwig C, Breyne K, Guédé D, Dörner JC, Froyman R, Meyer E. The intramammary efficacy of first generation cephalosporins against Staphylococcus aureus mastitis in mice. Vet Microbiol. 2012 Nov 9;160(1-2):141-50. doi: 10.1016/j.vetmic.2012.05.017. Epub 2012 May 22. PMID: 22677480.
5: Speksnijder DC, Hopman NEM, Kusters NE, Timmerman A, Swinkels JM, Penterman PAA, Krömker V, Bradley AJ, Botteldoorn N, Gehring R, Zomer AL. Potential of ESBL-producing Escherichia coli selection in bovine feces after intramammary administration of first generation cephalosporins using in vitro experiments. Sci Rep. 2022 Sep 5;12(1):15083. doi: 10.1038/s41598-022-15558-z. PMID: 36065056; PMCID: PMC9445091.
6: Karpiuk I, Michalska K, Bus K, Kiljan M, Tyski S. Identification and determination of related substances of ceftaroline fosamil in medicinal product by high performance liquid chromatography with diode array detection and tandem mass spectrometry. J Pharm Biomed Anal. 2017 Oct 25;145:651-660. doi: 10.1016/j.jpba.2017.07.060. Epub 2017 Aug 1. PMID: 28800526.
7: Zeng K, Zhang J, Wang Y, Wang ZH, Zhang SX, Wu CM, Shen JZ. Development of a rapid multi-residue assay for detecting β-lactams using penicillin binding protein 2x*. Biomed Environ Sci. 2013 Feb;26(2):100-9. doi: 10.3967/0895-3988.2013.02.004. PMID: 23336133.
8: Brunton LA, Duncan D, Coldham NG, Snow LC, Jones JR. A survey of antimicrobial usage on dairy farms and waste milk feeding practices in England and Wales. Vet Rec. 2012 Sep 22;171(12):296. doi: 10.1136/vr.100924. Epub 2012 Aug 18. PMID: 22903925.
9: Zhang X, Wang X, Dai C, Chen M. [Determination of six cephalosporin residues in milk by QuEChERS-ultra high performance liquid chromatography-tandem mass spectrometry]. Se Pu. 2018 Apr 8;36(4):345-350. Chinese. doi: 10.3724/SP.J.1123.2017.11007. PMID: 30136516.
10: Beltrán MC, Romero T, Althaus RL, Molina MP. Evaluation of the Charm maximum residue limit β-lactam and tetracycline test for the detection of antibiotics in ewe and goat milk. J Dairy Sci. 2013 May;96(5):2737-45. doi: 10.3168/jds.2012-6044. Epub 2013 Mar 1. PMID: 23453521.
11: Emmerich IU. Neue Arzneimittel für Pferde und landwirtschaftliche Nutztiere 2012 [New drugs for horses and production animals in 2012]. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2013;41(4):247-52. German. PMID: 23959620.
12: Wente N, Zoche-Golob V, Behr M, Krömker V. Susceptibility to cephalosporins of bacteria causing intramammary infections in dairy cows with a high somatic cell count in Germany. Prev Vet Med. 2016 Sep 1;131:146-151. doi: 10.1016/j.prevetmed.2016.06.010. Epub 2016 Jun 23. PMID: 27401227.
13: Freu G, Tomazi T, Monteiro CP, Barcelos MM, Alves BG, Santos MVD. Internal Teat Sealant Administered at Drying off Reduces Intramammary Infections during the Dry and Early Lactation Periods of Dairy Cows. Animals (Basel). 2020 Aug 28;10(9):1522. doi: 10.3390/ani10091522. PMID: 32872097; PMCID: PMC7552139.
14: Di Rocco M, Moloney M, O'Beirne T, Earley S, Berendsen B, Furey A, Danaher M. Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 2017 Jun 2;1500:121-135. doi: 10.1016/j.chroma.2017.04.022. Epub 2017 Apr 12. PMID: 28449875.
15: Hou XL, Wu YL, Lv Y, Xu XQ, Zhao J, Yang T. Development and validation of an ultra high performance liquid chromatography tandem mass spectrometry method for determination of 10 cephalosporins and desacetylcefapirin in milk. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Jul 15;931:6-11. doi: 10.1016/j.jchromb.2013.05.006. Epub 2013 May 17. PMID: 23747425.
16: Berry EA, Hillerton JE. Effect of an intramammary teat seal and dry cow antibiotic in relation to dry period length on postpartum mastitis. J Dairy Sci. 2007 Feb;90(2):760-5. doi: 10.3168/jds.S0022-0302(07)71560-6. Erratum in: J Dairy Sci. 2007 Aug;90(8):4004. PMID: 17235153.
17: McDougall S, Penry J, Dymock D. Antimicrobial susceptibilities in dairy herds that differ in dry cow therapy usage. J Dairy Sci. 2021 Aug;104(8):9142-9163. doi: 10.3168/jds.2020-19925. Epub 2021 May 15. PMID: 34001359.
18: Jank L, Martins MT, Arsand JB, Hoff RB, Barreto F, Pizzolato TM. High- throughput method for the determination of residues of β-lactam antibiotics in bovine milk by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(12):1992-2001. doi: 10.1080/19440049.2015.1099745. Epub 2015 Oct 15. PMID: 26414060.
19: Zorraquino MA, Roca M, Fernandez N, Molina MP, Althaus R. Heat inactivation of beta-lactam antibiotics in milk. J Food Prot. 2008 Jun;71(6):1193-8. doi: 10.4315/0362-028x-71.6.1193. PMID: 18592745.
20: Higgins HM, Mouncey J, Nanjiani I, Cook AJ. Understanding how new evidence influences practitioners' beliefs regarding dry cow therapy: A Bayesian approach using probabilistic elicitation. Prev Vet Med. 2017 Apr 1;139(Pt B):115-122. doi: 10.1016/j.prevetmed.2016.08.012. Epub 2016 Sep 7. PMID: 27639752.