MedKoo Cat#: 461344 | Name: Tolclofos-methyl
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Tolclofos-methyl is a fungicide used in the cultivation of cotton, sugar beets, and ornamental plants.

Chemical Structure

Tolclofos-methyl
CAS#57018-04-9

Theoretical Analysis

MedKoo Cat#: 461344

Name: Tolclofos-methyl

CAS#: 57018-04-9

Chemical Formula: C9H11Cl2O3PS

Exact Mass: 299.9544

Molecular Weight: 301.11

Elemental Analysis: C, 35.90; H, 3.68; Cl, 23.55; O, 15.94; P, 10.29; S, 10.65

Price and Availability

Size Price Availability Quantity
250mg USD 400.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Tolclofos-methyl; Rizolex; S-3349; S 3349; S3349;
IUPAC/Chemical Name
O-(2,6-dichloro-4-methylphenyl) O,O-dimethyl phosphorothioate
InChi Key
OBZIQQJJIKNWNO-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H11Cl2O3PS/c1-6-4-7(10)9(8(11)5-6)14-15(16,12-2)13-3/h4-5H,1-3H3
SMILES Code
S=P(OC)(OC1=C(Cl)C=C(C)C=C1Cl)OC
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 301.11 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Aprea C, Sciarra G, Lunghini L, Centi L, Ceccarelli F. Evaluation of respiratory and cutaneous doses and urinary excretion of alkylphosphates by workers in greenhouses treated with omethoate, fenitrothion, and tolclofos-methyl. AIHAJ. 2001 Jan-Feb;62(1):87-95. PubMed PMID: 11258873. 2: Fenoll J, Ruiz E, Flores P, Hellín P, Navarro S. Reduction of the movement and persistence of pesticides in soil through common agronomic practices. Chemosphere. 2011 Nov;85(8):1375-82. doi: 10.1016/j.chemosphere.2011.07.063. Epub 2011 Aug 27. PubMed PMID: 21872905. 3: Li W, Wu R, Duan J, Saint CP, van Leeuwen J. Impact of prechlorination on organophosphorus pesticides during drinking water treatment: Removal and transformation to toxic oxon byproducts. Water Res. 2016 Nov 15;105:1-10. doi: 10.1016/j.watres.2016.08.052. Epub 2016 Aug 26. PubMed PMID: 27589240. 4: Zhou M, Hu N, Shu S, Wang M. Molecularly imprinted nanomicrospheres as matrix solid-phase dispersant combined with gas chromatography for determination of four phosphorothioate pesticides in carrot and yacon. J Anal Methods Chem. 2015;2015:385167. doi: 10.1155/2015/385167. Epub 2015 Apr 14. PubMed PMID: 25954569; PubMed Central PMCID: PMC4411505. 5: Montuori P, Aurino S, Nardone A, Cirillo T, Triassi M. Spatial distribution and partitioning of organophosphates pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environ Sci Pollut Res Int. 2015 Jun;22(11):8629-42. doi: 10.1007/s11356-014-4016-z. Epub 2015 Jan 7. PubMed PMID: 25561261. 6: Martínez-Domínguez G, Plaza-Bolaños P, Romero-González R, Garrido-Frenich A. Analytical approaches for the determination of pesticide residues in nutraceutical products and related matrices by chromatographic techniques coupled to mass spectrometry. Talanta. 2014 Jan;118:277-91. doi: 10.1016/j.talanta.2013.10.006. Epub 2013 Oct 16. Review. PubMed PMID: 24274299. 7: Halwachs S, Schäfer I, Kneuer C, Seibel P, Honscha W. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model. Toxicol Appl Pharmacol. 2016 Aug 15;305:66-74. doi: 10.1016/j.taap.2016.06.007. Epub 2016 Jun 8. PubMed PMID: 27288731. 8: Cabizza M, Dedola F, Satta M. Residues behavior of some fungicides applied on two greenhouse tomato varieties different in shape and weight. J Environ Sci Health B. 2012;47(5):379-84. doi: 10.1080/03601234.2012.648531. PubMed PMID: 22424061. 9: Blasco C, Picó Y, Font G. Monitoring of five postharvest fungicides in fruit and vegetables by matrix solid-phase dispersion and liquid chromatography/mass spectrometry. J AOAC Int. 2002 May-Jun;85(3):704-11. PubMed PMID: 12083263. 10: Montuori P, Aurino S, Garzonio F, Sarnacchiaro P, Polichetti S, Nardone A, Triassi M. Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk. Sci Total Environ. 2016 Jul 15;559:218-231. doi: 10.1016/j.scitotenv.2016.03.156. Epub 2016 Apr 8. PubMed PMID: 27065443. 11: Ccanccapa A, Masiá A, Andreu V, Picó Y. Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain). Sci Total Environ. 2016 Jan 1;540:200-10. doi: 10.1016/j.scitotenv.2015.06.063. Epub 2015 Jun 25. PubMed PMID: 26118860. 12: Lee KG, Jo EK. Multiresidue pesticide analysis in Korean ginseng by gas chromatography-triple quadrupole tandem mass spectrometry. Food Chem. 2012 Oct 15;134(4):2497-503. doi: 10.1016/j.foodchem.2012.04.094. Epub 2012 Apr 21. PubMed PMID: 23442716. 13: Uclés A, Herrera López S, Dolores Hernando M, Rosal R, Ferrer C, Fernández-Alba AR. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis. Talanta. 2015 Nov 1;144:51-61. doi: 10.1016/j.talanta.2015.05.055. Epub 2015 May 30. PubMed PMID: 26452791. 14: Blasco C, Picó Y, Mañes J, Font G. Determination of fungicide residues in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 2002 Feb 22;947(2):227-35. PubMed PMID: 11883656. 15: Audenaert J, Vissers M, Gobin B. TESTING SIDE-EFFECTS OF COMMON PESTICIDES ON A. SWIRSKII UNDER GREENHOUSE CIRCUMSTANCES. Commun Agric Appl Biol Sci. 2014;79(2):207-10. PubMed PMID: 26084099. 16: Kojima M, Fukunaga K, Sasaki M, Nakamura M, Tsuji M, Nishiyama T. Evaluation of estrogenic activities of pesticides using an in vitro reporter gene assay. Int J Environ Health Res. 2005 Aug;15(4):271-80. PubMed PMID: 16175743. 17: Osman KA, Al-Humaid AM, Al-Rehiayani SM, Al-Redhaiman KN. Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia. Ecotoxicol Environ Saf. 2010 Sep;73(6):1433-9. doi: 10.1016/j.ecoenv.2010.05.020. Epub 2010 Jun 8. PubMed PMID: 20627311. 18: Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jørgensen EC. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002 Feb 15;179(1):1-12. PubMed PMID: 11884232. 19: Su R, Xu X, Wang X, Li D, Li X, Zhang H, Yu A. Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Nov 15;879(30):3423-8. doi: 10.1016/j.jchromb.2011.09.016. Epub 2011 Sep 13. PubMed PMID: 21963478. 20: Malandrakis AA, Vattis KN, Doukas EG, Markoglou AN. Effect of phenylpyrrole-resistance on fitness parameters and ochratoxin production in Aspergillus carbonarius. Int J Food Microbiol. 2013 Aug 1;165(3):287-94. doi: 10.1016/j.ijfoodmicro.2013.05.019. Epub 2013 May 29. PubMed PMID: 23800740.