1: Owens DK, Nanayakkara NP, Dayan FE. In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism. J Chem Ecol. 2013 Feb;39(2):262-70. doi: 10.1007/s10886-013-0237-8. Epub 2013 Jan 13. PubMed PMID: 23314892.
2: Romdhane S, Devers-Lamrani M, Barthelmebs L, Calvayrac C, Bertrand C, Cooper JF, Dayan FE, Martin-Laurent F. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils. Front Microbiol. 2016 May 24;7:775. doi: 10.3389/fmicb.2016.00775. eCollection 2016. PubMed PMID: 27252691; PubMed Central PMCID: PMC4877392.
3: Trivella A, Stawinoga M, Dayan FE, Cantrell CL, Mazellier P, Richard C. Photolysis of natural β-triketonic herbicides in water. Water Res. 2015 Jul 1;78:28-36. doi: 10.1016/j.watres.2015.03.026. Epub 2015 Apr 9. PubMed PMID: 25898250.
4: BRIGGS LH, HASSALL CH, TAYLOR WI. A synthesis of leptospermone. J Chem Soc. 1948 Mar;174:383. PubMed PMID: 18914117.
5: Jeong EY, Kim MG, Lee HS. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites. Pest Manag Sci. 2009 Mar;65(3):327-31. doi: 10.1002/ps.1684. PubMed PMID: 19051215.
6: Patil C, Calvayrac C, Zhou Y, Romdhane S, Salvia MV, Cooper JF, Dayan FE, Bertrand C. Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil. Sci Total Environ. 2016 Oct 1;566-567:552-558. doi: 10.1016/j.scitotenv.2016.05.071. Epub 2016 May 27. PubMed PMID: 27236620.
7: Romdhane S, Devers-Lamrani M, Martin-Laurent F, Jrad AB, Raviglione D, Salvia MV, Besse-Hoggan P, Dayan FE, Bertrand C, Barthelmebs L. Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide. Environ Sci Pollut Res Int. 2017 Jul 17. doi: 10.1007/s11356-017-9728-4. [Epub ahead of print] PubMed PMID: 28718021.
8: Dayan FE, Duke SO, Sauldubois A, Singh N, McCurdy C, Cantrell C. p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for beta-triketones from Leptospermum scoparium. Phytochemistry. 2007 Jul;68(14):2004-14. Epub 2007 Mar 26. PubMed PMID: 17368492.
9: Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P. Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med. 2005 Dec;71(12):1123-7. PubMed PMID: 16395648.
10: Rocaboy-Faquet E, Noguer T, Romdhane S, Bertrand C, Dayan FE, Barthelmebs L. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Appl Microbiol Biotechnol. 2014 Aug;98(16):7243-52. doi: 10.1007/s00253-014-5793-5. Epub 2014 May 13. PubMed PMID: 24816780.
11: Romdhane S, Devers-Lamrani M, Martin-Laurent F, Calvayrac C, Rocaboy-Faquet E, Riboul D, Cooper JF, Barthelmebs L. Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides. Environ Sci Pollut Res Int. 2016 Mar;23(5):4138-48. doi: 10.1007/s11356-015-4544-1. Epub 2015 Apr 24. PubMed PMID: 25903192.
12: Mustafa K, Perry NB, Weavers RT. 2-Hydroxyflavanones from Leptospermum polygalifolium subsp. polygalifolium Equilibrating sets of hemiacetal isomers. Phytochemistry. 2003 Dec;64(7):1285-93. PubMed PMID: 14599527.
13: van Klink JW, Brophy JJ, Perry NB, Weavers RT. beta-triketones from myrtaceae: isoleptospermone from leptospermum scoparium and papuanone from corymbia dallachiana . J Nat Prod. 1999 Mar;62(3):487-9. PubMed PMID: 10096865.
14: Agampodi SB, Peacock SJ, Thevanesam V, Nugegoda DB, Smythe L, Thaipadungpanit J, Craig SB, Burns MA, Dohnt M, Boonsilp S, Senaratne T, Kumara A, Palihawadana P, Perera S, Vinetz JM. Leptospirosis outbreak in Sri Lanka in 2008: lessons for assessing the global burden of disease. Am J Trop Med Hyg. 2011 Sep;85(3):471-8. doi: 10.4269/ajtmh.2011.11-0276. Erratum in: Am J Trop Med Hyg. 2011 Oct;85(4):790. PubMed PMID: 21896807; PubMed Central PMCID: PMC3163869.
15: Schnitzler P, Wiesenhofer K, Reichling J. Comparative study on the cytotoxicity of different Myrtaceae essential oils on cultured vero and RC-37 cells. Pharmazie. 2008 Nov;63(11):830-5. PubMed PMID: 19069246.
16: Dayan FE, Singh N, McCurdy CR, Godfrey CA, Larsen L, Weavers RT, Van Klink JW, Perry NB. Beta-triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions. J Agric Food Chem. 2009 Jun 24;57(12):5194-200. doi: 10.1021/jf9005593. PubMed PMID: 19435355.
17: Lock EA. From Weed Killer to Wonder Drug. Adv Exp Med Biol. 2017;959:175-185. doi: 10.1007/978-3-319-55780-9_16. Review. PubMed PMID: 28755195.
18: Park CG, Jang M, Shin E, Kim J. Myrtaceae Plant Essential Oils and their β-Triketone Components as Insecticides against Drosophila suzukii. Molecules. 2017 Jun 24;22(7). pii: E1050. doi: 10.3390/molecules22071050. PubMed PMID: 28672824.
19: Alvarez Costa A, Naspi CV, Lucia A, Masuh HM. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2017 May 1;54(3):670-676. doi: 10.1093/jme/tjw222. PubMed PMID: 28399283.
20: Fratini F, Mancini S, Turchi B, Friscia E, Pistelli L, Giusti G, Cerri D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol Res. 2017 Jan;195:11-17. doi: 10.1016/j.micres.2016.11.005. Epub 2016 Nov 18. PubMed PMID: 28024521.