MedKoo Cat#: 598528 | Name: Lead phthalocyanine
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Lead phthalocyanine is a selective carrier for preparation of a cysteine-selective electrode.

Chemical Structure

Lead phthalocyanine
Lead phthalocyanine
CAS#15187-16-3

Theoretical Analysis

MedKoo Cat#: 598528

Name: Lead phthalocyanine

CAS#: 15187-16-3

Chemical Formula: C32H16N8Pb

Exact Mass: 720.1264

Molecular Weight: 719.78

Elemental Analysis: C, 53.40; H, 2.24; N, 15.57; Pb, 28.79

Price and Availability

Size Price Availability Quantity
1g USD 250.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Lead phthalocyanine;
IUPAC/Chemical Name
lead(II) (21E,26Z)-6H,13H,20H,30H-phthalocyanine-13,30-diide
InChi Key
WSQYJDCCFQPFJC-UHFFFAOYSA-N
InChi Code
InChI=1S/C32H16N8.Pb/c1-2-10-18-17(9-1)25-33-26(18)38-28-21-13-5-6-14-22(21)30(35-28)40-32-24-16-8-7-15-23(24)31(36-32)39-29-20-12-4-3-11-19(20)27(34-29)37-25;/h1-16H;/q-2;+2
SMILES Code
c1(c(nc(c2c3cccc2)nc3nc(c4ccccc45)[n-]c5n6)[n-]c7nc8nc6c9c8cccc9)c7cccc1.[Pb+2]
Appearance
Solid powder
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Lead phthalocyanine is a selective carrier for preparation of a cystine-selective electrode.
In vitro activity:
Lead phthalocyanine (PbPc) has been extensively used as a good near-infrared (NIR) light absorber for NIR-sensitive organic solar cells (OSCs). As shown in Fig. 1, the PbPc molecule is well known to have a nonplanar unique structure called a “shuttle cock”. This shuttle cock shape leads to the formation of the monoclinic and triclinic crystal phases of PbPc films (see Fig. 2c). Reference: Sci Rep. 2022 May 25;12(1):8810. https://pubmed.ncbi.nlm.nih.gov/35614199/
In vivo activity:
TBD

Preparing Stock Solutions

The following data is based on the product molecular weight 719.78 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Kato M, Yoshizawa H, Nakaya M, Kitagawa Y, Okamoto K, Yamada T, Yoshino M, Tanaka K, Onoe J. Unraveling the reasons behind lead phthalocyanine acting as a good absorber for near-infrared sensitive devices. Sci Rep. 2022 May 25;12(1):8810. doi: 10.1038/s41598-022-12990-z. PMID: 35614199; PMCID: PMC9132886. 2. Madhuri KP, Sagade AA, Santra PK, John NS. Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine. Beilstein J Nanotechnol. 2020 May 19;11:814-820. doi: 10.3762/bjnano.11.66. PMID: 32551206; PMCID: PMC7277535.
In vitro protocol:
1. Kato M, Yoshizawa H, Nakaya M, Kitagawa Y, Okamoto K, Yamada T, Yoshino M, Tanaka K, Onoe J. Unraveling the reasons behind lead phthalocyanine acting as a good absorber for near-infrared sensitive devices. Sci Rep. 2022 May 25;12(1):8810. doi: 10.1038/s41598-022-12990-z. PMID: 35614199; PMCID: PMC9132886. 2. Madhuri KP, Sagade AA, Santra PK, John NS. Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine. Beilstein J Nanotechnol. 2020 May 19;11:814-820. doi: 10.3762/bjnano.11.66. PMID: 32551206; PMCID: PMC7277535.
In vivo protocol:
TBD
1: Cai Y, Xu S, Qiao X, Wang L, Liu Y, Wang T, Xu X. Chirality control of nonplanar lead phthalocyanine (PbPc) and its potential application in high-density storage: a theoretical investigation. Phys Chem Chem Phys. 2015 Sep 28;17(36):23651-6. doi: 10.1039/c5cp03355a. PubMed PMID: 26299939. 2: Dexters W, Bourgeois E, Nesládek M, D'Haen J, Goovaerts E, Haenen K. Molecular orientation of lead phthalocyanine on (100) oriented single crystal diamond surfaces. Phys Chem Chem Phys. 2015 Apr 21;17(15):9619-23. doi: 10.1039/c5cp00174a. PubMed PMID: 25779759. 3: Kim TM, Shim HS, Choi MS, Kim HJ, Kim JJ. Multilayer epitaxial growth of lead phthalocyanine and C(70) using CuBr as a templating layer for enhancing the efficiency of organic photovoltaic cells. ACS Appl Mater Interfaces. 2014 Mar 26;6(6):4286-91. doi: 10.1021/am405946m. Epub 2014 Mar 14. PubMed PMID: 24575946. 4: Nizovtsev AS, Kozlova SG. Electronic rearrangements during the inversion of lead phthalocyanine. J Phys Chem A. 2013 Jan 17;117(2):481-8. doi: 10.1021/jp3108107. Epub 2013 Jan 7. PubMed PMID: 23244509. 5: Sun L, Zhang J, Zhao F, Luo X, Lv W, li Y, Ren Q, Wen Z, Peng Y, Liu X. Ultrahigh near infrared photoresponsive organic field-effect transistors with lead phthalocyanine/C60 heterojunction on poly(vinyl alcohol) gate dielectric. Nanotechnology. 2015 May 8;26(18):185501. doi: 10.1088/0957-4484/26/18/185501. Epub 2015 Apr 13. PubMed PMID: 25865614. 6: Sperl A, Kröger J, Berndt R. Electronic superstructure of lead phthalocyanine on lead islands. J Phys Chem A. 2011 Jun 30;115(25):6973-8. doi: 10.1021/jp112169s. Epub 2011 Apr 7. PubMed PMID: 21473640. 7: Vasseur K, Broch K, Ayzner AL, Rand BP, Cheyns D, Frank C, Schreiber F, Toney MF, Froyen L, Heremans P. Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells. ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8505-15. doi: 10.1021/am401933d. Epub 2013 Aug 30. PubMed PMID: 23905883. 8: Yamamoto R, Yamada T, Taguchi M, Miyakubo K, Kato HS, Munakata T. Dispersions of image potential states on surfaces of clean graphite and lead phthalocyanine film. Phys Chem Chem Phys. 2012 Jul 21;14(27):9601-5. doi: 10.1039/c2cp40922d. Epub 2012 Jun 8. PubMed PMID: 22684276. 9: Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001 Dec 15;73(24):5972-8. PubMed PMID: 11791568. 10: Jakubik W, Urbańczyk M, Opilski A. Sensor properties of lead phthalocyanine in a surface acoustic wave system. Ultrasonics. 2001 Apr;39(3):227-32. PubMed PMID: 11350004. 11: Sheng C, Norwood RA, Wang J, Thomas J, Steeves D, Kimball B, Peyghambarian N. Nonlinear optical transmission of lead phthalocyanine-doped nematic liquid crystal composites for multiscale nonlinear switching from nanosecond to continuous wave. Appl Opt. 2009 May 10;48(14):2731-4. PubMed PMID: 19424396. 12: Liu H, Tan W, Si J, Hou X. Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses. Opt Express. 2008 Aug 18;16(17):13486-91. PubMed PMID: 18711588. 13: Su Z, Hou F, Wang X, Gao Y, Jin F, Zhang G, Li Y, Zhang L, Chu B, Li W. High-performance organic small-molecule panchromatic photodetectors. ACS Appl Mater Interfaces. 2015 Feb 4;7(4):2529-34. doi: 10.1021/am5074479. Epub 2015 Jan 23. PubMed PMID: 25591117. 14: Sperl A, Kröger J, Berndt R. Demetalation of a single organometallic complex. J Am Chem Soc. 2011 Jul 27;133(29):11007-9. doi: 10.1021/ja203199q. Epub 2011 Jun 30. PubMed PMID: 21702473. 15: Chen CC, Chen LC. Fabrication and characteristics of ZnO/OAD-InN/PbPc hybrid solar cells prepared by oblique-angle deposition. Molecules. 2012 Aug 8;17(8):9496-505. doi: 10.3390/molecules17089496. PubMed PMID: 22874794. 16: Baran JD, Larsson JA. Inversion of the shuttlecock shaped metal phthalocyanines MPc (M = Ge, Sn, Pb)--a density functional study. Phys Chem Chem Phys. 2010 Jun 21;12(23):6179-86. doi: 10.1039/b924421b. Epub 2010 Apr 14. PubMed PMID: 20390206. 17: Hosokawa Y, Kobayashi K, Oyabu N, Matsushige K, Yamada H. A procedure to determine the optimum imaging parameters for atomic/molecular resolution frequency modulation atomic force microscopy. Rev Sci Instrum. 2010 Sep;81(9):093701. doi: 10.1063/1.3477995. Erratum in: Rev Sci Instrum. 2011 Jan;82(1):019901. PubMed PMID: 20886981. 18: Sumimoto M, Honda T, Kawashima Y, Hori K, Fujimoto H. Theoretical and experimental investigation on the electronic properties of the shuttlecock shaped and the double-decker structured metal phthalocyanines, MPc and M(Pc)2 (M = Sn and Pb). Dalton Trans. 2012 Jun 21;41(23):7141-50. doi: 10.1039/c2dt30187c. Epub 2012 May 8. PubMed PMID: 22569961. 19: Hernãândez FE, Yang S, Van Stryland EW, Hagan DJ. High-dynamic-range cascaded-focus optical limiter. Opt Lett. 2000 Aug 15;25(16):1180-2. PubMed PMID: 18066160. 20: Choi MS, Chae S, Kim HJ, Kim JJ. Control of Crystallinity in PbPc:C(60) Blend Film and Application for Inverted Near-Infrared Organic Photodetector. ACS Appl Mater Interfaces. 2018 Jul 20. doi: 10.1021/acsami.8b08803. [Epub ahead of print] PubMed PMID: 29992818.