Synonym
Dilauroyl peroxide; Lauroyl peroxide; NSC 670; NSC-670; NSC670; Dyp-97F;
IUPAC/Chemical Name
dodecanoic peroxyanhydride
InChi Key
YIVJZNGAASQVEM-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H46O4/c1-3-5-7-9-11-13-15-17-19-21-23(25)27-28-24(26)22-20-18-16-14-12-10-8-6-4-2/h3-22H2,1-2H3
SMILES Code
CCCCCCCCCCCC(OOC(CCCCCCCCCCC)=O)=O
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
Biological target:
Lauroyl peroxide is an oxidizing agent.
In vitro activity:
The LMA (lauryl methacrylate) columns photo-polymerized with LPO (lauroyl peroxide) were compared with those prepared with AIBN. Using PAHs, alkylbenzenes and basic compounds for testing, the columns obtained with LPO gave the best compromise between efficiency, resolution and analysis time.
Reference: Electrophoresis. 2009 Nov;30(21):3748-56. https://pubmed.ncbi.nlm.nih.gov/19816888/
Preparing Stock Solutions
The following data is based on the
product
molecular weight
398.63
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
Formulation protocol:
1. Bernabé-Zafón V, Beneito-Cambra M, Simó-Alfonso EF, Ramis-Ramos G, Herrero-Martínez JM. Photo-polymerized lauryl methacrylate monolithic columns for CEC using lauroyl peroxide as initiator. Electrophoresis. 2009 Nov;30(21):3748-56. doi: 10.1002/elps.200900038. PMID: 19816888.
2. Cantó-Mirapeix A, Herrero-Martínez JM, Mongay-Fernández C, Simó-Alfonso EF. Lauroyl peroxide as thermal initiator of lauryl methacrylate monolithic columns for CEC. Electrophoresis. 2008 Nov;29(21):4399-406. doi: 10.1002/elps.200800317. PMID: 18942681.
In vitro protocol:
1. Bernabé-Zafón V, Beneito-Cambra M, Simó-Alfonso EF, Ramis-Ramos G, Herrero-Martínez JM. Photo-polymerized lauryl methacrylate monolithic columns for CEC using lauroyl peroxide as initiator. Electrophoresis. 2009 Nov;30(21):3748-56. doi: 10.1002/elps.200900038. PMID: 19816888.
2. Cantó-Mirapeix A, Herrero-Martínez JM, Mongay-Fernández C, Simó-Alfonso EF. Lauroyl peroxide as thermal initiator of lauryl methacrylate monolithic columns for CEC. Electrophoresis. 2008 Nov;29(21):4399-406. doi: 10.1002/elps.200800317. PMID: 18942681.
1: Pan C, Chen R, Shao W, Yu JT. Metal-free radical addition/cyclization of alkynoates with xanthates towards 3-(β-carbonyl)coumarins. Org Biomol Chem. 2016 Oct 14;14(38):9033-9. doi: 10.1039/c6ob01732k. Epub 2016 Sep 7. PubMed PMID: 27604378.
2: Kakaei S, Xu J. Synthesis of (2-alkylthiothiazolin-5-yl)methyl dodecanoates via tandem radical reaction. Org Biomol Chem. 2013 Sep 7;11(33):5481-90. doi: 10.1039/c3ob41229f. PubMed PMID: 23857510.
3: Steensma M, Schuurman P, Malow M, Krause U, Wehrstedt KD. Evaluation of the validity of the UN SADT H.4 test for solid organic peroxides and self-reactive substances. J Hazard Mater. 2005 Jan 31;117(2-3):89-102. PubMed PMID: 15629567.
4: Reyes-Gutiérrez PE, Torres-Ochoa RO, Martínez R, Miranda LD. Synthesis of azepino[4,5-b]indolones via an intermolecular radical oxidative substitution of N-Boc tryptamine. Org Biomol Chem. 2009 Apr 7;7(7):1388-96. doi: 10.1039/b821260k. Epub 2009 Feb 23. PubMed PMID: 19300824.
5: Bantchev GB, Biresaw G, Vermillion KE, Appell M. Synthesis and spectral characterization of methyl 9(10)-dialkylphosphonostearates. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jun;110:81-91. doi: 10.1016/j.saa.2013.02.039. Epub 2013 Mar 5. PubMed PMID: 23557777.
6: El Kaïm L, Grimaud L, Miranda LD, Vieu E, Cano-Herrera MA, Perez-Labrada K. New xanthate-based radical cyclization onto alkynes. Chem Commun (Camb). 2010 Apr 14;46(14):2489-91. doi: 10.1039/b924207d. Epub 2010 Jan 27. PubMed PMID: 20379559.
7: Tokumura A, Moriyama T, Minamino H, Hayakawa T, Tsukatani H. Exogenous phosphatidic acid with saturated short-chain fatty acyl groups induces superoxide anion release from guinea pig peritoneal polymorphonuclear leukocytes by three different mechanisms. Biochim Biophys Acta. 1997 Jan 7;1344(1):87-102. PubMed PMID: 9022758.
8: Singh RJ, Goss SP, Joseph J, Kalyanaraman B. Nitration of gamma-tocopherol and oxidation of alpha-tocopherol by copper-zinc superoxide dismutase/H2O2/NO2-: role of nitrogen dioxide free radical. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12912-7. PubMed PMID: 9789014; PubMed Central PMCID: PMC23652.
9: Cai Y, Roberts BP, Tocher DA, Barnett SA. Carbon-carbon bond formation by radical addition-fragmentation reactions of O-alkylated enols. Org Biomol Chem. 2004 Sep 7;2(17):2517-29. Epub 2004 Aug 10. PubMed PMID: 15326533.
10: Gheorghe A, Quiclet-Sire B, Vila X, Zard SZ. Synthesis of 3-arylpiperidines by a radical 1,4-aryl migration. Org Lett. 2005 Apr 14;7(8):1653-6. PubMed PMID: 15816775.
11: Ollivier C, Renaud P. A novel approach for the formation of carbon-nitrogen bonds: azidation of alkyl radicals with sulfonyl azides. J Am Chem Soc. 2001 May 23;123(20):4717-27. PubMed PMID: 11457281.
12: Yoshihara S, Neal RA. Comparison of the metabolism of parathion by a rat liver reconstituted mixed-function oxidase enzyme system and by a system containing cumene hydroperoxide and purified rat liver cytochrome P-450. Drug Metab Dispos. 1977 Mar-Apr;5(2):191-7. PubMed PMID: 15813.
13: Umakoshi H, Morimoto K, Ohama Y, Nagami H, Shimanouchi T, Kuboi R. Liposome modified with Mn-porphyrin complex can simultaneously induce antioxidative enzyme-like activity of both superoxide dismutase and peroxidase. Langmuir. 2008 May 6;24(9):4451-5. doi: 10.1021/la800174n. Epub 2008 Mar 27. PubMed PMID: 18366234.
14: Winston GW, Cederbaum AI. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. J Biol Chem. 1983 Feb 10;258(3):1508-13. PubMed PMID: 6296101.
15: Yang X, Wang C. Dichotomy of Manganese Catalysis via Organometallic or Radical Mechanism: Stereodivergent Hydrosilylation of Alkynes. Angew Chem Int Ed Engl. 2018 Jan 22;57(4):923-928. doi: 10.1002/anie.201710206. Epub 2017 Dec 27. PubMed PMID: 29205747.