MedKoo Cat#: 592525 | Name: Sitogluside
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Sitogluside (also known as β-Sitosterol-D-glucoside, daucosterol, and eleutheroside) is a natural phytosterol-like compound. It is the glucoside of β-sitosterol.

Chemical Structure

Sitogluside
Sitogluside
CAS#474-58-8

Theoretical Analysis

MedKoo Cat#: 592525

Name: Sitogluside

CAS#: 474-58-8

Chemical Formula: C35H60O6

Exact Mass: 576.4390

Molecular Weight: 576.86

Elemental Analysis: C, 72.87; H, 10.48; O, 16.64

Price and Availability

Size Price Availability Quantity
5mg USD 400.00 2 Weeks
10mg USD 600.00 2 Weeks
25mg USD 900.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Sitogluside; NSC 165962; NSC-165962; NSC165962; Lyoniside, Daucosterol, Eleutheroside A, Alexandrin, Coriandrinol, Daucosterin, beta-Sitosterol glucoside, β-Sitosterol-D-glucoside
IUPAC/Chemical Name
(3-beta)-Stigmast-5-en-3-yl-beta-D-glucopyranoside
InChi Key
NPJICTMALKLTFW-VAWFKKCMSA-N
InChi Code
InChI=1S/C35H60O6/c1-7-22(20(2)3)9-8-21(4)26-12-13-27-25-11-10-23-18-24(14-16-34(23,5)28(25)15-17-35(26,27)6)40-33-32(39)31(38)30(37)29(19-36)41-33/h10,20-22,24-33,36-39H,7-9,11-19H2,1-6H3/t21-,22-,24-,25+,26-,27+,28+,29-,30-,31+,32-,33-,34+,35-/m1/s1
SMILES Code
O[C@H]([C@H]([C@@H]([C@@H](CO)O1)O)O)[C@@H]1O[C@@H]2CC[C@]3(C)[C@@]4([H])CC[C@]5(C)[C@@H]([C@H](C)CC[C@H](C(C)C)CC)CC[C@@]5([H])[C@]4([H])CC=C3C2
Appearance
Solid powder
Purity
>70% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Sitogluside inhibits α-amylase and α-glucosidase and scavenges DPPH radicals (IC50s = 46.4, 17, and 155 µM, respectively). It inhibits the proliferation of HepG2 and SMMC-7721 hepatocellular carcinoma cells (IC50s = 143.4 and 138.73 µg/ml, respectively) and migration and invasion in the same cells when used at concentrations of 50 or 100 µg/ml.
In vitro activity:
Sitogluside is a promising therapeutic strategy for hepatocellular carcinoma (HCC) treatment by inhibiting cell migration and invasion in HCC cells via the Wnt/β-catenin signaling pathway. Sitogluside reduced the proliferation, migration, and invasion capacities of HCC cells in a concentration-dependent manner. In addition, sitogluside reduced the levels of β-catenin and p-β-catenin in HepG2 and SMMC-7721 cells. Reference: Molecules. 2017 Jun 2;22(6):862. https://pubmed.ncbi.nlm.nih.gov/28574485/
In vivo activity:
In this study, sitogluside showed in vivo antitumor effects that corroborate its previous in vitro effects. In a rat model of breast cancer, sitogluside at all doses reduced tumor volume, as well as protein, malondialdehyde (MDA), and CA 15-3 levels. Tumor sections in sitogluside-treated rats showed a lower proliferation of mammary ducts with mild to moderate inflammatory responses. Sitogluside also exhibited an antioxidant effect. Reference: Environ Toxicol. 2020 Oct;35(10):1125-1136. https://pubmed.ncbi.nlm.nih.gov/32449848/
Solvent mg/mL mM comments
Solubility
DMSO 3.3 5.77
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 576.86 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Zeng J, Liu X, Li X, Zheng Y, Liu B, Xiao Y. Daucosterol Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Wnt/β-Catenin Signaling. Molecules. 2017 Jun 2;22(6):862. doi: 10.3390/molecules22060862. PMID: 28574485; PMCID: PMC6152702. 2. Lee S, Kim JH, Kim M, Hong S, Park H, Kim EJ, Kim EY, Lee C, Sohn Y, Jung HS. Exploring the Anti-Osteoporotic Potential of Daucosterol: Impact on Osteoclast and Osteoblast Activities. Int J Mol Sci. 2023 Nov 17;24(22):16465. doi: 10.3390/ijms242216465. PMID: 38003654; PMCID: PMC10671633. In vivo study 1. Nguedia MY, Tueche AB, Yaya AJG, Yadji V, Ndinteh DT, Njamen D, Zingue S. Daucosterol from Crateva adansonii DC (Capparaceae) reduces 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Wistar rats. Environ Toxicol. 2020 Oct;35(10):1125-1136. doi: 10.1002/tox.22948. Epub 2020 May 25. PMID: 32449848. 2. Zhang H, Song Y, Feng C. Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway. Metab Brain Dis. 2020 Aug;35(6):1035-1044. doi: 10.1007/s11011-020-00575-6. Epub 2020 May 4. PMID: 32363473.
In vitro protocol:
1. Zeng J, Liu X, Li X, Zheng Y, Liu B, Xiao Y. Daucosterol Inhibits the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells via Wnt/β-Catenin Signaling. Molecules. 2017 Jun 2;22(6):862. doi: 10.3390/molecules22060862. PMID: 28574485; PMCID: PMC6152702. 2. Lee S, Kim JH, Kim M, Hong S, Park H, Kim EJ, Kim EY, Lee C, Sohn Y, Jung HS. Exploring the Anti-Osteoporotic Potential of Daucosterol: Impact on Osteoclast and Osteoblast Activities. Int J Mol Sci. 2023 Nov 17;24(22):16465. doi: 10.3390/ijms242216465. PMID: 38003654; PMCID: PMC10671633.
In vivo protocol:
1. Nguedia MY, Tueche AB, Yaya AJG, Yadji V, Ndinteh DT, Njamen D, Zingue S. Daucosterol from Crateva adansonii DC (Capparaceae) reduces 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Wistar rats. Environ Toxicol. 2020 Oct;35(10):1125-1136. doi: 10.1002/tox.22948. Epub 2020 May 25. PMID: 32449848. 2. Zhang H, Song Y, Feng C. Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway. Metab Brain Dis. 2020 Aug;35(6):1035-1044. doi: 10.1007/s11011-020-00575-6. Epub 2020 May 4. PMID: 32363473.
1: Arief I, Sunnardianto GK, Khairi S, Saputri WD. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. J Integr Bioinform. 2024 Sep 17. doi: 10.1515/jib-2023-0030. Epub ahead of print. PMID: 39286883. 2: Irfan E, Dilshad E, Ahmad F, Almajhdi FN, Hussain T, Abdi G, Waheed Y. Phytoconstituents of Artemisia Annua as potential inhibitors of SARS CoV2 main protease: an in silico study. BMC Infect Dis. 2024 May 15;24(1):495. doi: 10.1186/s12879-024-09387-w. PMID: 38750422; PMCID: PMC11094927. 3: Li T, Li W, Guo X, Tan T, Xiang C, Ouyang Z. Unraveling the potential mechanisms of the anti-osteoporotic effects of the Achyranthes bidentata- Dipsacus asper herb pair: a network pharmacology and experimental study. Front Pharmacol. 2023 Oct 2;14:1242194. doi: 10.3389/fphar.2023.1242194. PMID: 37849727; PMCID: PMC10577322. 4: Liu C, Liu Y, Liu Y, Guan J, Gao Y, Ou L, Qi Y, Lv X, Zhang J. Network Pharmacology, Molecular Docking and Experimental Verification Revealing the Mechanism of Fule Cream against Childhood Atopic Dermatitis. Curr Comput Aided Drug Des. 2024;20(6):860-875. doi: 10.2174/0115734099257922230925074407. PMID: 37807411. 5: Lu BW, Liang XZ, Wen MT, Li G. Exploration at the network pharmacology level of possible targeting mechanisms of Smilacis Glabrae Rhixoma for the treatment of osteoporosis. Eur Rev Med Pharmacol Sci. 2023 Apr;27(8):3681-3698. doi: 10.26355/eurrev_202304_32165. PMID: 37140318. 6: Rabaan AA, Halwani MA, Aljeldah M, Al Shammari BR, Garout M, Aldali J, Alawfi A, Alshengeti A, Alsulaiman AM, Alsayyah A. Exploration of potent antiviral phytomedicines from Lauraceae family plants against SARS-CoV-2 RNA-dependent RNA polymerase. J Biomol Struct Dyn. 2023;41(24):15085-15105. doi: 10.1080/07391102.2023.2186720. Epub 2023 Mar 8. PMID: 36883874. 7: Guo H, Zeng H, Fu C, Huang J, Lu J, Hu Y, Zhou Y, Luo L, Zhang Y, Zhang L, Chen J, Zeng Q. Identification of Sitogluside as a Potential Skin-Pigmentation- Reducing Agent through Network Pharmacology. Oxid Med Cell Longev. 2021 Sep 23;2021:4883398. doi: 10.1155/2021/4883398. PMID: 34603597; PMCID: PMC8483913. 8: Liu X, Gao YP, Shen ZX, Qu YY, Liu WW, Yao D, Xing B, Xu ZH, Li X, Zhao QC. Study on the experimental verification and regulatory mechanism of Rougui- Ganjiang herb-pair for the actions of thermogenesis in brown adipose tissue based on network pharmacology. J Ethnopharmacol. 2021 Oct 28;279:114378. doi: 10.1016/j.jep.2021.114378. Epub 2021 Jun 27. PMID: 34192599. 9: Behloul N, Baha S, Guo Y, Yang Z, Shi R, Meng J. In silico identification of strong binders of the SARS-CoV-2 receptor-binding domain. Eur J Pharmacol. 2021 Jan 5;890:173701. doi: 10.1016/j.ejphar.2020.173701. Epub 2020 Oct 29. PMID: 33130279; PMCID: PMC7598446. 10: Zainab B, Ayaz Z, Alwahibi MS, Khan S, Rizwana H, Soliman DW, Alawaad A, Mehmood Abbasi A. In-silico elucidation of Moringa oleifera phytochemicals against diabetes mellitus. Saudi J Biol Sci. 2020 Sep;27(9):2299-2307. doi: 10.1016/j.sjbs.2020.04.002. Epub 2020 Apr 13. PMID: 32884411; PMCID: PMC7451590.