MedKoo Cat#: 592318 | Name: Raubasine
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Raubasine, also known as ajmalicine, is a potent adrenolytic agent which preferentially blocks α1-adrenoceptor.

Chemical Structure

Raubasine
Raubasine
CAS#483-04-5

Theoretical Analysis

MedKoo Cat#: 592318

Name: Raubasine

CAS#: 483-04-5

Chemical Formula: C21H24N2O3

Exact Mass: 352.1787

Molecular Weight: 352.43

Elemental Analysis: C, 71.57; H, 6.86; N, 7.95; O, 13.62

Price and Availability

Size Price Availability Quantity
10mg USD 270.00
50mg USD 510.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Raubasine, Ajmalicine
IUPAC/Chemical Name
Oxayohimban-16-carboxylic acid, 16,17-didehydro-19-methyl-, methyl ester, (19-alpha)- (9CI)
InChi Key
GRTOGORTSDXSFK-XJTZBENFSA-N
InChi Code
InChI=1S/C21H24N2O3/c1-12-16-10-23-8-7-14-13-5-3-4-6-18(13)22-20(14)19(23)9-15(16)17(11-26-12)21(24)25-2/h3-6,11-12,15-16,19,22H,7-10H2,1-2H3/t12-,15-,16+,19-/m0/s1
SMILES Code
[H][C@]12C(NC3=C4C=CC=C3)=C4CCN1C[C@@]5([C@H](C)OC=C(C(OC)=O)[C@]5(C2)[H])[H]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Raubasine is an terpenoid indole alkaloid that has been found in R. serpentina. It reduces the phenylephrine-induced pressor response in pithed rats when administered at doses ranging from 1 to 4 mg/kg.3 It also binds to α2A-, α2B-, α2C-, and α2D-adrenergic receptors (Kis = 8.2, 14.5, 5, and 289 nM, respectively). Raubasine is an reversible but non-competitive nicotine receptor full inhibitor, with an IC50 of 72.3 μM.
In vitro activity:
In vitro findings demonstrated that reserpine and ajmalicine as a multi-target directed ligand treatment approach have disease modifying potential for the amelioration of Alzheimer's disease. Reference: Molecules. 2020 Apr 1;25(7):1609. https://pubmed.ncbi.nlm.nih.gov/32244635/
In vivo activity:
This study demonstrated the binding of phytochemicals, one being ajmalicine, to the non-structural protein 15 (Nsp15) viral protein. Raubasine might play a key role in inhibiting SARS-CoV-2 replication. Reference: Phytomedicine. 2021 May;85:153317. doi: 10.1016/j.phymed.2020.153317. https://pubmed.ncbi.nlm.nih.gov/32943302/
Solvent mg/mL mM
Solubility
DMSO 5.6 15.78
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 352.43 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Kashyap P, Kalaiselvan V, Kumar R, Kumar S. Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Molecules. 2020 Apr 1;25(7):1609. doi: 10.3390/molecules25071609. PMID: 32244635; PMCID: PMC7180484. 2. Liu W, Chen R, Chen M, Zhang H, Peng M, Yang C, Ming X, Lan X, Liao Z. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata. Planta. 2012 Jul;236(1):239-50. doi: 10.1007/s00425-012-1608-z. Epub 2012 Feb 14. PMID: 22331368. 3. Wang N, Xie YW, Li MY, Li FF, Zhang LY, You YL, Wang SQ. Simultaneous determination of five alkaloids from Rauvolfia vomitoria in rat plasma by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and type 2 diabetic rats. J Sep Sci. 2021 Apr;44(7):1391-1403. doi: 10.1002/jssc.202000914. Epub 2021 Feb 10. PMID: 33470534. 4. Kumar S, Kashyap P, Chowdhury S, Kumar S, Panwar A, Kumar A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine. 2021 May;85:153317. doi: 10.1016/j.phymed.2020.153317. Epub 2020 Sep 3. PMID: 32943302; PMCID: PMC7470885.
In vitro protocol:
1. Kashyap P, Kalaiselvan V, Kumar R, Kumar S. Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Molecules. 2020 Apr 1;25(7):1609. doi: 10.3390/molecules25071609. PMID: 32244635; PMCID: PMC7180484. 2. Liu W, Chen R, Chen M, Zhang H, Peng M, Yang C, Ming X, Lan X, Liao Z. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata. Planta. 2012 Jul;236(1):239-50. doi: 10.1007/s00425-012-1608-z. Epub 2012 Feb 14. PMID: 22331368.
In vivo protocol:
1. Wang N, Xie YW, Li MY, Li FF, Zhang LY, You YL, Wang SQ. Simultaneous determination of five alkaloids from Rauvolfia vomitoria in rat plasma by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and type 2 diabetic rats. J Sep Sci. 2021 Apr;44(7):1391-1403. doi: 10.1002/jssc.202000914. Epub 2021 Feb 10. PMID: 33470534. 2. Kumar S, Kashyap P, Chowdhury S, Kumar S, Panwar A, Kumar A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine. 2021 May;85:153317. doi: 10.1016/j.phymed.2020.153317. Epub 2020 Sep 3. PMID: 32943302; PMCID: PMC7470885.
1: Verma SK, Goyary D, Singh AK, Anandhan S, Raina SN, Pandey S, Kumar S, Khare N. Modulation of terpenoid indole alkaloid pathway via elicitation with phytosynthesized silver nanoparticles for the enhancement of ajmalicine, a pharmaceutically important alkaloid. Planta. 2023 Dec 27;259(2):30. doi: 10.1007/s00425-023-04311-z. PMID: 38150044. 2: Sun Z, Ma C, Zhan X. Ajmalicine induces the pyroptosis of hepatoma cells to exert the antitumor effect. J Biochem Mol Toxicol. 2024 Jan;38(1):e23614. doi: 10.1002/jbt.23614. Epub 2023 Dec 8. PMID: 38064316. 3: Chen K, Yu G. Tetrahydroalstonine possesses protective potentials on palmitic acid stimulated SK-N-MC cells by suppression of Aβ1-42 and tau through regulation of PI3K/Akt signaling pathway. Eur J Pharmacol. 2024 Jan 5;962:176251. doi: 10.1016/j.ejphar.2023.176251. Epub 2023 Dec 5. PMID: 38061471. 4: Liao Y, Wang JY, Pan Y, Zou X, Wang C, Peng Y, Ao YL, Lam MF, Zhang X, Zhang XQ, Shi L, Zhang S. The Protective Effect of (-)-Tetrahydroalstonine against OGD/R-Induced Neuronal Injury via Autophagy Regulation. Molecules. 2023 Mar 4;28(5):2370. doi: 10.3390/molecules28052370. PMID: 36903613; PMCID: PMC10005631. 5: Liu T, Gou Y, Zhang B, Gao R, Dong C, Qi M, Jiang L, Ding X, Li C, Lian J. Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnol Bioeng. 2022 May;119(5):1314-1326. doi: 10.1002/bit.28040. Epub 2022 Jan 31. PMID: 35060115. 6: Vento AE, de Persis S, De Filippis S, Schifano F, Napoletano F, Corkery JM, Kotzalidis GD. Case Report: Treatment of Kratom Use Disorder With a Classical Tricyclic Antidepressant. Front Psychiatry. 2021 Mar 31;12:640218. doi: 10.3389/fpsyt.2021.640218. PMID: 33868054; PMCID: PMC8044355. 7: Kamble SH, Berthold EC, King TI, Raju Kanumuri SR, Popa R, Herting JR, León F, Sharma A, McMahon LR, Avery BA, McCurdy CR. Pharmacokinetics of Eleven Kratom Alkaloids Following an Oral Dose of Either Traditional or Commercial Kratom Products in Rats. J Nat Prod. 2021 Apr 23;84(4):1104-1112. doi: 10.1021/acs.jnatprod.0c01163. Epub 2021 Feb 23. PMID: 33620222; PMCID: PMC8694001. 8: Creed SM, Gutridge AM, Argade MD, Hennessy MR, Friesen JB, Pauli GF, van Rijn RM, Riley AP. Isolation and Pharmacological Characterization of Six Opioidergic Picralima nitida Alkaloids. J Nat Prod. 2021 Jan 22;84(1):71-80. doi: 10.1021/acs.jnatprod.0c01036. Epub 2020 Dec 16. PMID: 33326237; PMCID: PMC7932029. 9: Liu S, Dang M, Lei Y, Ahmad SS, Khalid M, Kamal MA, Chen L. Ajmalicine and its Analogues Against AChE and BuChE for the Management of Alzheimer's Disease: An In-silico Study. Curr Pharm Des. 2020;26(37):4808-4814. doi: 10.2174/1381612826666200407161842. PMID: 32264807. 10: Kashyap P, Kalaiselvan V, Kumar R, Kumar S. Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Molecules. 2020 Apr 1;25(7):1609. doi: 10.3390/molecules25071609. PMID: 32244635; PMCID: PMC7180484. 11: Singh S, Pandey SS, Shanker K, Kalra A. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. J Appl Microbiol. 2020 Apr;128(4):1128-1142. doi: 10.1111/jam.14546. Epub 2020 Jan 3. PMID: 31821696. 12: Picazo E, Morrill LA, Susick RB, Moreno J, Smith JM, Garg NK. Enantioselective Total Syntheses of Methanoquinolizidine-Containing Akuammiline Alkaloids and Related Studies. J Am Chem Soc. 2018 May 23;140(20):6483-6492. doi: 10.1021/jacs.8b03404. Epub 2018 May 15. PMID: 29694031; PMCID: PMC6085837. 13: Zhang XN, Liu J, Liu Y, Wang Y, Abozeid A, Yu ZG, Tang ZH. Metabolomics Analysis Reveals that Ethylene and Methyl Jasmonate Regulate Different Branch Pathways to Promote the Accumulation of Terpenoid Indole Alkaloids in Catharanthus roseus. J Nat Prod. 2018 Feb 23;81(2):335-342. doi: 10.1021/acs.jnatprod.7b00782. Epub 2018 Feb 6. PMID: 29406718. 14: Qu Y, Thamm AMK, Czerwinski M, Masada S, Kim KH, Jones G, Liang P, De Luca V. Geissoschizine synthase controls flux in the formation of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Planta. 2018 Mar;247(3):625-634. doi: 10.1007/s00425-017-2812-7. Epub 2017 Nov 17. PMID: 29147812. 15: Yamamoto K, Takahashi K, Mizuno H, Anegawa A, Ishizaki K, Fukaki H, Ohnishi M, Yamazaki M, Masujima T, Mimura T. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3891-6. doi: 10.1073/pnas.1521959113. Epub 2016 Mar 21. PMID: 27001858; PMCID: PMC4833245. 16: Benyammi R, Paris C, Khelifi-Slaoui M, Zaoui D, Belabbassi O, Bakiri N, Meriem Aci M, Harfi B, Malik S, Makhzoum A, Desobry S, Khelifi L. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharm Biol. 2016 Oct;54(10):2033-43. doi: 10.3109/13880209.2016.1140213. Epub 2016 Mar 17. PMID: 26983347. 17: Mathew S, Faheem M, Al-Malki AL, Kumosani TA, Qadri I. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds. Bioinformation. 2015 Apr 30;11(4):189-95. doi: 10.6026/97320630011189. PMID: 26124559; PMCID: PMC4479051. 18: Zhou P, Yang J, Zhu J, He S, Zhang W, Yu R, Zi J, Song L, Huang X. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol. 2015 Sep;99(17):7035-45. doi: 10.1007/s00253-015-6651-9. Epub 2015 May 16. PMID: 25981997. 19: Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, O'Connor SE. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol. 2015 Mar 19;22(3):336-41. doi: 10.1016/j.chembiol.2015.02.006. Epub 2015 Mar 12. PMID: 25772467; PMCID: PMC4372254. 20: Wang A, Stout CD, Zhang Q, Johnson EF. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J Biol Chem. 2015 Feb 20;290(8):5092-5104. doi: 10.1074/jbc.M114.627661. Epub 2015 Jan 1. PMID: 25555909; PMCID: PMC4335244.