MedKoo Cat#: 597978 | Name: Proctolin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Proctolin modulates interneuronal and neuromuscular synaptic transmission in a wide variety of arthropods. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species.

Chemical Structure

Proctolin
CAS#57966-42-4

Theoretical Analysis

MedKoo Cat#: 597978

Name: Proctolin

CAS#: 57966-42-4

Chemical Formula: C30H48N8O8

Exact Mass: 648.3595

Molecular Weight: 648.76

Elemental Analysis: C, 55.54; H, 7.46; N, 17.27; O, 19.73

Price and Availability

Size Price Availability Quantity
1mg USD 425.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Proctolin; Gut factor;
IUPAC/Chemical Name
L-arginyl-L-tyrosyl-L-leucyl-L-prolyl-L-threonine
InChi Key
KKUPPLMEDQDAJX-UEHMALFGSA-N
InChi Code
InChI=1S/C30H48N8O8/c1-16(2)14-22(28(44)38-13-5-7-23(38)27(43)37-24(17(3)39)29(45)46)36-26(42)21(15-18-8-10-19(40)11-9-18)35-25(41)20(31)6-4-12-34-30(32)33/h8-11,16-17,20-24,39-40H,4-7,12-15,31H2,1-3H3,(H,35,41)(H,36,42)(H,37,43)(H,45,46)(H4,32,33,34)/t17-,20+,21+,22+,23+,24+/m1/s1
SMILES Code
C[C@@H](O)[C@@H](C(O)=O)NC([C@H]1N(C([C@H](CC(C)C)NC([C@H](CC2=CC=C(O)C=C2)NC([C@H](CCCNC(N)=N)N)=O)=O)=O)CCC1)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Proctolin is an endogenous pentapeptide that acts as an excitatory neuromodulator.
In vitro activity:
The two-electrode voltage-clamp technique was used to study the ionic basis of the slow depolarization caused by the neuropeptide proctolin. At negative membrane potentials, proctolin caused a dose-dependent slow inward current. This current reversed and became outward at membrane potentials positive to 0 to +20 mV. This study concludes that proctolin causes an inward current by increasing a voltage-dependent cation conductance that is predominantly permeable to sodium. Reference: Neurosci Lett. 1989 Nov 20;106(1-2):105-11. https://pubmed.ncbi.nlm.nih.gov/2586815/
In vivo activity:
Proctolin-induced contractions were dose-dependent, were reduced by knocking down expression of the Drosophila proctolin receptor in muscle tissue, and were larger in some muscle cells than others (i.e., larger in fibers 4, 12, and 13 than in 6 and 7). Proctolin also increased the amplitude of nerve-evoked contractions in a dose-dependent manner, and the magnitude of this effect was also larger in some muscle cells than others (again, larger in fibers 4, 12, and 13 than in 6 and 7). Reducing proctolin receptor expression decreased the velocity of larval crawling at higher temperatures, and thermal preference in these larvae. Reference: J Neurophysiol. 2016 Jan 1;115(1):568-80. https://pubmed.ncbi.nlm.nih.gov/26538605/
Solvent mg/mL mM comments
Solubility
Water 100.0 154.14
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 648.76 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Freschi JE. Proctolin activates a slow, voltage-dependent sodium current in motoneurons of the lobster cardiac ganglion. Neurosci Lett. 1989 Nov 20;106(1-2):105-11. doi: 10.1016/0304-3940(89)90210-3. PMID: 2586815. 2. Ormerod KG, LePine OK, Bhutta MS, Jung J, Tattersall GJ, Mercier AJ. Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster. J Neurophysiol. 2016 Jan 1;115(1):568-80. doi: 10.1152/jn.00606.2015. Epub 2015 Nov 4. PMID: 26538605; PMCID: PMC4760479. 3. Philipp B, Rogalla N, Kreissl S. The neuropeptide proctolin potentiates contractions and reduces cGMP concentration via a PKC-dependent pathway. J Exp Biol. 2006 Feb;209(Pt 3):531-40. doi: 10.1242/jeb.02011. PMID: 16424103.
In vitro protocol:
1. Freschi JE. Proctolin activates a slow, voltage-dependent sodium current in motoneurons of the lobster cardiac ganglion. Neurosci Lett. 1989 Nov 20;106(1-2):105-11. doi: 10.1016/0304-3940(89)90210-3. PMID: 2586815.
In vivo protocol:
1. Ormerod KG, LePine OK, Bhutta MS, Jung J, Tattersall GJ, Mercier AJ. Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster. J Neurophysiol. 2016 Jan 1;115(1):568-80. doi: 10.1152/jn.00606.2015. Epub 2015 Nov 4. PMID: 26538605; PMCID: PMC4760479. 2. Philipp B, Rogalla N, Kreissl S. The neuropeptide proctolin potentiates contractions and reduces cGMP concentration via a PKC-dependent pathway. J Exp Biol. 2006 Feb;209(Pt 3):531-40. doi: 10.1242/jeb.02011. PMID: 16424103.
1: Cronin EM, Schneider AC, Nadim F, Bucher D. Modulation by Neuropeptides with Overlapping Targets Results in Functional Overlap in Oscillatory Circuit Activation. J Neurosci. 2024 Jan 3;44(1):e1201232023. doi: 10.1523/JNEUROSCI.1201-23.2023. PMID: 37968117; PMCID: PMC10851686. 2: Cronin EM, Schneider AC, Nadim F, Bucher D. Modulation by neuropeptides with overlapping targets results in functional overlap in oscillatory circuit activation. bioRxiv [Preprint]. 2023 Jun 28:2023.06.05.543756. doi: 10.1101/2023.06.05.543756. Update in: J Neurosci. 2024 Jan 3;44(1):e1201232023. doi: 10.1523/JNEUROSCI.1201-23.2023. PMID: 37333253; PMCID: PMC10274681. 3: Lange AB, Kisana A, Leyria J, Orchard I. The Male Reproductive System of the Kissing Bug, Rhodnius prolixus Stål, 1859 (Hemiptera: Reduviidae: Triatominae): Arrangements of the Muscles and the Myoactivity of the Selected Neuropeptides. Insects. 2023 Mar 28;14(4):324. doi: 10.3390/insects14040324. PMID: 37103139; PMCID: PMC10146185. 4: Jindal V, Li D, Rault LC, Fatehi S, Singh R, Mating M, Zou Y, Ng HL, Kaczmarek K, Zabrocki J, Gui S, Smagghe G, Anderson TD, Nachman RJ, Park Y. Bee- safe peptidomimetic acaricides achieved by comparative genomics. Sci Rep. 2022 Oct 14;12(1):17263. doi: 10.1038/s41598-022-20110-0. PMID: 36241660; PMCID: PMC9568543. 5: Rue MCP, Baas-Thomas N, Iyengar PS, Scaria LK, Marder E. Localization of chemical synapses and modulatory release sites in the cardiac ganglion of the crab, Cancer borealis. J Comp Neurol. 2022 Dec;530(17):2954-2965. doi: 10.1002/cne.25385. Epub 2022 Jul 26. PMID: 35882035; PMCID: PMC9560961. 6: Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID Jr. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis. 2022 May;13(3):101910. doi: 10.1016/j.ttbdis.2022.101910. Epub 2022 Jan 31. PMID: 35121230; PMCID: PMC9477089. 7: Schneider AC, Fox D, Itani O, Golowasch J, Bucher D, Nadim F. Frequency- Dependent Action of Neuromodulation. eNeuro. 2021 Nov 9;8(6):ENEURO.0338-21.2021. doi: 10.1523/ENEURO.0338-21.2021. PMID: 34593519; PMCID: PMC8584230. 8: Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne). 2021 Jun 21;12:674711. doi: 10.3389/fendo.2021.674711. PMID: 34234741; PMCID: PMC8256442. 9: Subelzu N, Schöneich C. Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer. Pharm Res. 2021 May;38(5):915-930. doi: 10.1007/s11095-021-03042-8. Epub 2021 Apr 21. PMID: 33881737. 10: Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S. A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. Insect Sci. 2022 Feb;29(1):230-244. doi: 10.1111/1744-7917.12913. Epub 2021 Mar 29. PMID: 33783135. 11: Grininger D, Birmingham JT. Dual modulatory effects on feedback from a proprioceptor in the crustacean stomatogastric nervous system. J Neurophysiol. 2021 May 1;125(5):1755-1767. doi: 10.1152/jn.00080.2020. Epub 2021 Mar 24. PMID: 33760675. 12: Oliveira RS, Borges BT, Leal AP, de Brum Vieira P, Silva DB, Hyslop S, Vinadé L, Dos Santos TG, Carlini CR, Orchard I, Lange AB, Dal Belo CA. Chemical and functional analyses of Rhinella icterica (Spix, 1824) toad secretion screened on contractions of the heart and oviduct in Locusta migratoria. J Insect Physiol. 2021 Feb-Mar;129:104192. doi: 10.1016/j.jinsphys.2021.104192. Epub 2021 Jan 16. PMID: 33460706. 13: Subelzu N, Schöneich C. Near UV and Visible Light Induce Iron-Dependent Photodegradation Reactions in Pharmaceutical Buffers: Mechanistic and Product Studies. Mol Pharm. 2020 Nov 2;17(11):4163-4179. doi: 10.1021/acs.molpharmaceut.0c00639. Epub 2020 Oct 8. PMID: 32986444. 14: Senior EE, Poulin HE, Dobecki MG, Anair BM, Fabian-Fine R. Co-expression of the neuropeptide proctolin and glutamate in the central nervous system, along mechanosensory neurons and leg muscle in Cupiennius salei. Cell Tissue Res. 2020 Nov;382(2):281-292. doi: 10.1007/s00441-020-03217-6. Epub 2020 Jun 15. PMID: 32556729; PMCID: PMC7606560. 15: Bostancıklıoğlu M. Temporal Correlation Between Neurological and Gastrointestinal Symptoms of SARS-CoV-2. Inflamm Bowel Dis. 2020 Jul 17;26(8):e89-e91. doi: 10.1093/ibd/izaa131. PMID: 32440692; PMCID: PMC7313997. 16: Bläser M, Predel R. Evolution of Neuropeptide Precursors in Polyneoptera (Insecta). Front Endocrinol (Lausanne). 2020 Apr 15;11:197. doi: 10.3389/fendo.2020.00197. PMID: 32373067; PMCID: PMC7179676. 17: Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, Hartl M, von Haeseler A, Gerner C, Raible F, Tessmar-Raible K. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. Elife. 2019 Feb 15;8:e41556. doi: 10.7554/eLife.41556. PMID: 30767890; PMCID: PMC6377233. 18: Tran NM, Mykles DL, Elizur A, Ventura T. Characterization of G-protein coupled receptors from the blackback land crab Gecarcinus lateralis Y organ transcriptome over the molt cycle. BMC Genomics. 2019 Jan 22;20(1):74. doi: 10.1186/s12864-018-5363-9. PMID: 30669976; PMCID: PMC6341585. 19: Hillyer JF. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. Curr Opin Insect Sci. 2018 Oct;29:41-48. doi: 10.1016/j.cois.2018.06.002. Epub 2018 Jun 11. PMID: 30551824. 20: Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet. 2018 Sep;32(3):183-194. doi: 10.1080/01677063.2018.1502761. Epub 2018 Oct 10. PMID: 30303434.