1: Sandy M, Butler A. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. J Nat Prod. 2011 May 27;74(5):1207-12. doi: 10.1021/np200126z. Epub 2011 May 5. PubMed PMID: 21545171; PubMed Central PMCID: PMC3126860.
2: Tomisić V, Blanc S, Elhabiri M, Expert D, Albrecht-Gary AM. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi. Inorg Chem. 2008 Oct 20;47(20):9419-30. doi: 10.1021/ic801143e. Epub 2008 Sep 20. PubMed PMID: 18803373.
3: Lu C, Buyer JS, Okonya JF, Miller MJ. Synthesis of optically pure chrysobactin and immunoassay development. Biometals. 1996 Oct;9(4):377-83. PubMed PMID: 8837459.
4: Franza T, Enard C, van Gijsegem F, Expert D. Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways. Mol Microbiol. 1991 Jun;5(6):1319-29. PubMed PMID: 1787788.
5: Franza T, Expert D. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol. 1991 Nov;173(21):6874-81. PubMed PMID: 1657869; PubMed Central PMCID: PMC209040.
6: Persmark M, Expert D, Neilands JB. Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds. J Bacteriol. 1992 Jul;174(14):4783-9. Erratum in: J Bacteriol 1992 Sep;174(18):6004. PubMed PMID: 1624465; PubMed Central PMCID: PMC206276.
7: Rauscher L, Expert D, Matzanke BF, Trautwein AX. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase. J Biol Chem. 2002 Jan 25;277(4):2385-95. Epub 2001 Nov 1. PubMed PMID: 11694506.
8: Persmark M, Neilands JB. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi. Biometals. 1992 Spring;5(1):29-36. PubMed PMID: 1392469.
9: Neema C, Laulhere JP, Expert D. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi. Plant Physiol. 1993 Jul;102(3):967-973. PubMed PMID: 12231882; PubMed Central PMCID: PMC158870.
10: Persmark M, Expert D, Neilands JB. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J Biol Chem. 1989 Feb 25;264(6):3187-93. PubMed PMID: 2914949.
11: Expert D, Boughammoura A, Franza T. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. J Biol Chem. 2008 Dec 26;283(52):36564-72. doi: 10.1074/jbc.M807749200. Epub 2008 Nov 6. PubMed PMID: 18990691; PubMed Central PMCID: PMC2662311.
12: Mahé B, Masclaux C, Rauscher L, Enard C, Expert D. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family. Mol Microbiol. 1995 Oct;18(1):33-43. PubMed PMID: 8596459.
13: Enard C, Expert D. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family. Microbiology. 2000 Aug;146 ( Pt 8):2051-8. PubMed PMID: 10931909.
14: Barnes HH, Ishimaru CA. Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora. Biometals. 1999 Mar;12(1):83-7. PubMed PMID: 10420578.
15: Douet V, Expert D, Barras F, Py B. Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system. J Bacteriol. 2009 Feb;191(3):795-804. doi: 10.1128/JB.00845-08. Epub 2008 Oct 31. PubMed PMID: 18978048; PubMed Central PMCID: PMC2632095.
16: Franza T, Mahé B, Expert D. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol. 2005 Jan;55(1):261-75. PubMed PMID: 15612933.
17: Expert D, Sauvage C, Neilands JB. Negative transcriptional control of iron transport in Erwinia chrysanthemi involves an iron-responsive two-factor system. Mol Microbiol. 1992 Jul;6(14):2009-17. PubMed PMID: 1508046.
18: Franza T, Michaud-Soret I, Piquerel P, Expert D. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937. Mol Plant Microbe Interact. 2002 Nov;15(11):1181-91. PubMed PMID: 12423024.
19: Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol. 2009 Aug;150(4):1687-96. doi: 10.1104/pp.109.138636. Epub 2009 May 15. PubMed PMID: 19448037; PubMed Central PMCID: PMC2719128.
20: Dellagi A, Rigault M, Segond D, Roux C, Kraepiel Y, Cellier F, Briat JF, Gaymard F, Expert D. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Plant J. 2005 Jul;43(2):262-72. PubMed PMID: 15998312.