MedKoo Cat#: 597925 | Name: Chrysobactin

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Chrysobactin is isolated from Erwinia chrysanthemi. Chrysobactin has siderophore activity.

Chemical Structure

Chrysobactin
Chrysobactin
CAS#120124-51-8

Theoretical Analysis

MedKoo Cat#: 597925

Name: Chrysobactin

CAS#: 120124-51-8

Chemical Formula: C16H23N3O7

Exact Mass: 369.1536

Molecular Weight: 369.37

Elemental Analysis: C, 52.03; H, 6.28; N, 11.38; O, 30.32

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Chrysobactin;
IUPAC/Chemical Name
(2,3-dihydroxybenzoyl)-D-lysyl-L-serine
InChi Key
NNTXFOAPABMVEG-MNOVXSKESA-N
InChi Code
InChI=1S/C16H23N3O7/c17-7-2-1-5-10(15(24)19-11(8-20)16(25)26)18-14(23)9-4-3-6-12(21)13(9)22/h3-4,6,10-11,20-22H,1-2,5,7-8,17H2,(H,18,23)(H,19,24)(H,25,26)/t10-,11+/m1/s1
SMILES Code
OC[C@@H](C(O)=O)NC([C@@H](CCCCN)NC(C1=CC=CC(O)=C1O)=O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 369.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Sandy M, Butler A. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. J Nat Prod. 2011 May 27;74(5):1207-12. doi: 10.1021/np200126z. Epub 2011 May 5. PubMed PMID: 21545171; PubMed Central PMCID: PMC3126860. 2: Tomisić V, Blanc S, Elhabiri M, Expert D, Albrecht-Gary AM. Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi. Inorg Chem. 2008 Oct 20;47(20):9419-30. doi: 10.1021/ic801143e. Epub 2008 Sep 20. PubMed PMID: 18803373. 3: Lu C, Buyer JS, Okonya JF, Miller MJ. Synthesis of optically pure chrysobactin and immunoassay development. Biometals. 1996 Oct;9(4):377-83. PubMed PMID: 8837459. 4: Franza T, Enard C, van Gijsegem F, Expert D. Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways. Mol Microbiol. 1991 Jun;5(6):1319-29. PubMed PMID: 1787788. 5: Franza T, Expert D. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol. 1991 Nov;173(21):6874-81. PubMed PMID: 1657869; PubMed Central PMCID: PMC209040. 6: Persmark M, Expert D, Neilands JB. Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds. J Bacteriol. 1992 Jul;174(14):4783-9. Erratum in: J Bacteriol 1992 Sep;174(18):6004. PubMed PMID: 1624465; PubMed Central PMCID: PMC206276. 7: Rauscher L, Expert D, Matzanke BF, Trautwein AX. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase. J Biol Chem. 2002 Jan 25;277(4):2385-95. Epub 2001 Nov 1. PubMed PMID: 11694506. 8: Persmark M, Neilands JB. Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi. Biometals. 1992 Spring;5(1):29-36. PubMed PMID: 1392469. 9: Neema C, Laulhere JP, Expert D. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi. Plant Physiol. 1993 Jul;102(3):967-973. PubMed PMID: 12231882; PubMed Central PMCID: PMC158870. 10: Persmark M, Expert D, Neilands JB. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J Biol Chem. 1989 Feb 25;264(6):3187-93. PubMed PMID: 2914949. 11: Expert D, Boughammoura A, Franza T. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. J Biol Chem. 2008 Dec 26;283(52):36564-72. doi: 10.1074/jbc.M807749200. Epub 2008 Nov 6. PubMed PMID: 18990691; PubMed Central PMCID: PMC2662311. 12: Mahé B, Masclaux C, Rauscher L, Enard C, Expert D. Differential expression of two siderophore-dependent iron-acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family. Mol Microbiol. 1995 Oct;18(1):33-43. PubMed PMID: 8596459. 13: Enard C, Expert D. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family. Microbiology. 2000 Aug;146 ( Pt 8):2051-8. PubMed PMID: 10931909. 14: Barnes HH, Ishimaru CA. Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora. Biometals. 1999 Mar;12(1):83-7. PubMed PMID: 10420578. 15: Douet V, Expert D, Barras F, Py B. Erwinia chrysanthemi iron metabolism: the unexpected implication of the inner membrane platform within the type II secretion system. J Bacteriol. 2009 Feb;191(3):795-804. doi: 10.1128/JB.00845-08. Epub 2008 Oct 31. PubMed PMID: 18978048; PubMed Central PMCID: PMC2632095. 16: Franza T, Mahé B, Expert D. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol. 2005 Jan;55(1):261-75. PubMed PMID: 15612933. 17: Expert D, Sauvage C, Neilands JB. Negative transcriptional control of iron transport in Erwinia chrysanthemi involves an iron-responsive two-factor system. Mol Microbiol. 1992 Jul;6(14):2009-17. PubMed PMID: 1508046. 18: Franza T, Michaud-Soret I, Piquerel P, Expert D. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937. Mol Plant Microbe Interact. 2002 Nov;15(11):1181-91. PubMed PMID: 12423024. 19: Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol. 2009 Aug;150(4):1687-96. doi: 10.1104/pp.109.138636. Epub 2009 May 15. PubMed PMID: 19448037; PubMed Central PMCID: PMC2719128. 20: Dellagi A, Rigault M, Segond D, Roux C, Kraepiel Y, Cellier F, Briat JF, Gaymard F, Expert D. Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Plant J. 2005 Jul;43(2):262-72. PubMed PMID: 15998312.