MedKoo Cat#: 592071 | Name: Parathion-methyl
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Parathion-methyl is the methyl homolog of parathion. Parathion-methyl is an effective, but highly toxic, organothiophosphate insecticide and cholinesterase inhibitor. An electrochemical (EC) sensor based on metalloporphyrin metal-organic framework (MOF) for the detection of parathion-methyl (PM) has been developed.

Chemical Structure

Parathion-methyl
Parathion-methyl
CAS#298-00-0

Theoretical Analysis

MedKoo Cat#: 592071

Name: Parathion-methyl

CAS#: 298-00-0

Chemical Formula: C8H10NO5PS

Exact Mass: 263.0017

Molecular Weight: 263.20

Elemental Analysis: C, 36.51; H, 3.83; N, 5.32; O, 30.39; P, 11.77; S, 12.18

Price and Availability

Size Price Availability Quantity
100mg USD 250.00
250mg USD 510.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Parathion-methyl; NCI-C02971 NCI C02971; NCIC02971
IUPAC/Chemical Name
Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester
InChi Key
RLBIQVVOMOPOHC-UHFFFAOYSA-N
InChi Code
InChI=1S/C8H10NO5PS/c1-12-15(16,13-2)14-8-5-3-7(4-6-8)9(10)11/h3-6H,1-2H3
SMILES Code
S=P(OC)(OC1=CC=C([N+]([O-])=O)C=C1)OC
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Parathion-methyl is the methyl homolog of parathion. An effective, but highly toxic, organothiophosphate insecticide and cholinesterase inhibitor.
In vitro activity:
The goal of this study was to investigate the in vitro effects of mPT (methyl parathion) on cells in the oral cavity and evaluate the potential protective role of epigallocathechin-3-gallate (EGCG) on these effects. Human gingival fibroblasts (HGF) were exposed to 10, 50, or 100 μ g/ml mPT for 24 h and assessed for oxidative stress, as evidenced by reactive generation of oxygen species (ROS), induction of apoptotic cell death, DNA damage (comet assay and cytochinesis-block micronucleus test), and nitric oxide (NO) production. The results showed that mPT produced significant oxidative stress, cytotoxicity, and genotoxicity and increased NO levels through stimulation of inducible NO synthase expression. Reference: J Toxicol Environ Health A. 2015;78(19):1227-40. https://pubmed.ncbi.nlm.nih.gov/26479333/
In vivo activity:
The results showed that MP (methyl parathion) exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Reference: Toxics. 2023 Jan 15;11(1):84. https://pubmed.ncbi.nlm.nih.gov/36668810/

Preparing Stock Solutions

The following data is based on the product molecular weight 263.20 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Argentin G, Divizia M, Cicchetti R. Oxidative Stress, Cytotoxicity, and Genotoxicity Induced by Methyl Parathion in Human Gingival Fibroblasts: Protective Role of Epigallocatechin-3-Gallate. J Toxicol Environ Health A. 2015;78(19):1227-40. doi: 10.1080/15287394.2015.1079582. Epub 2015 Oct 19. PMID: 26479333. 2. Edwards FL, Yedjou CG, Tchounwou PB. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG₂) cells. Environ Toxicol. 2013 Jun;28(6):342-8. doi: 10.1002/tox.20725. Epub 2011 May 4. PMID: 21544925; PMCID: PMC3768275. 3. Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. Toxics. 2023 Jan 15;11(1):84. doi: 10.3390/toxics11010084. PMID: 36668810; PMCID: PMC9866970. 4. Urióstegui-Acosta M, Tello-Mora P, Solís-Heredia MJ, Ortega-Olvera JM, Piña-Guzmán B, Martín-Tapia D, González-Mariscal L, Quintanilla-Vega B. Methyl parathion causes genetic damage in sperm and disrupts the permeability of the blood-testis barrier by an oxidant mechanism in mice. Toxicology. 2020 May 30;438:152463. doi: 10.1016/j.tox.2020.152463. Epub 2020 Apr 12. PMID: 32294493.
In vitro protocol:
1. Argentin G, Divizia M, Cicchetti R. Oxidative Stress, Cytotoxicity, and Genotoxicity Induced by Methyl Parathion in Human Gingival Fibroblasts: Protective Role of Epigallocatechin-3-Gallate. J Toxicol Environ Health A. 2015;78(19):1227-40. doi: 10.1080/15287394.2015.1079582. Epub 2015 Oct 19. PMID: 26479333. 2. Edwards FL, Yedjou CG, Tchounwou PB. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG₂) cells. Environ Toxicol. 2013 Jun;28(6):342-8. doi: 10.1002/tox.20725. Epub 2011 May 4. PMID: 21544925; PMCID: PMC3768275.
In vivo protocol:
1. Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. Toxics. 2023 Jan 15;11(1):84. doi: 10.3390/toxics11010084. PMID: 36668810; PMCID: PMC9866970. 2. Urióstegui-Acosta M, Tello-Mora P, Solís-Heredia MJ, Ortega-Olvera JM, Piña-Guzmán B, Martín-Tapia D, González-Mariscal L, Quintanilla-Vega B. Methyl parathion causes genetic damage in sperm and disrupts the permeability of the blood-testis barrier by an oxidant mechanism in mice. Toxicology. 2020 May 30;438:152463. doi: 10.1016/j.tox.2020.152463. Epub 2020 Apr 12. PMID: 32294493.
1: Xu F, Li Y, Fu Y, Chen X, Fan S, Cao Z. A Dual-Focus Workflow for Simultaneously Engineering High Activity and Thermal Stability in Methyl Parathion Hydrolase. Angew Chem Int Ed Engl. 2024 Aug 10:e202410881. doi: 10.1002/anie.202410881. Epub ahead of print. PMID: 39126280. 2: Pan M, Zhang D, Xie M, Liu X, Wang Y, Hu X, Wang S. Electrochemical sensor for effective detection of methyl parathion applying multidimensional MXene/CNHs/PPy nanocomposite to synergistically immobilize acetylcholinesterase. Food Chem. 2024 Jul 15;460(Pt 1):140432. doi: 10.1016/j.foodchem.2024.140432. Epub ahead of print. PMID: 39033643. 3: Chen J, Hao M, Xin Y, Zhu R, Gu Z, Zhang L, Guo X. A novel phosphotriesterase hybrid nanoflower-hydrogel sensor equipped with a smartphone detector for real- time on-site monitoring of organophosphorus pesticides. Int J Biol Macromol. 2024 Jul 17;276(Pt 2):133979. doi: 10.1016/j.ijbiomac.2024.133979. Epub ahead of print. PMID: 39029845. 4: Ameen F, Alsarraf MJ, Abalkhail T, Stephenson SL. Evaluation of resistance patterns and bioremoval efficiency of hydrocarbons and heavy metals by the mycobiome of petroleum refining wastewater in Jazan with assessment of molecular typing and cytotoxicity of Scedosporium apiospermum JAZ-20. Heliyon. 2024 Jun 16;10(12):e32954. doi: 10.1016/j.heliyon.2024.e32954. PMID: 38994074; PMCID: PMC11238013. 5: Shao C, Ma R, Yan Z, Li C, Hong Y, Li Y, Chen Y. Basic research for identification and classification of organophosphorus pesticides in water based on ultraviolet-visible spectroscopy information. Environ Sci Pollut Res Int. 2024 Jul;31(33):45761-45775. doi: 10.1007/s11356-024-34182-0. Epub 2024 Jul 8. PMID: 38976190. 6: Li P, Meng J, Zhang C, Wei Z, Guo Z, Yun K, Liu Y. Mass spectrometry detection of organophosphorus pesticide adducts on butyrylcholinesterase and albumin. J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Aug 1;1243:124195. doi: 10.1016/j.jchromb.2024.124195. Epub 2024 Jun 17. PMID: 38959705. 7: Tahmasebi AA, Tabatabaei Z, Azhdarpoor A, Salimi Beni A. Evaluation of phosphate insecticides and common herbicides: monitoring and risk assessment in water treatment plant, distribution networks, and underground water wells. J Water Health. 2024 Jun;22(6):1088-1101. doi: 10.2166/wh.2024.076. Epub 2024 May 16. PMID: 38935459. 8: Dan Y, Gurevich D, Gershoni O, Netti F, Adler-Abramovich L, Afriat-Jurnou L. Coupling Peptide-Based Encapsulation of Enzymes with Bacteria for Paraoxon Bioremediation. ACS Appl Mater Interfaces. 2024 Jul 10;16(27):35155-35165. doi: 10.1021/acsami.4c06501. Epub 2024 Jun 26. PMID: 38920304; PMCID: PMC11247427. 9: Gao P, Hussain MZ, Zhou Z, Warnan J, Elsner M, Fischer RA. Zr-based metalloporphyrin MOF probe for electrochemical detection of parathion-methyl. Biosens Bioelectron. 2024 Oct 1;261:116515. doi: 10.1016/j.bios.2024.116515. Epub 2024 Jun 20. PMID: 38909444. 10: Karakuş F, Arzuk E, Ergüç A. Mitochondrial Impact of Organophosphate Pesticide-Induced Cardiotoxicity: An In Silico and In Vitro Study. Int J Toxicol. 2024 Jun 19:10915818241261624. doi: 10.1177/10915818241261624. Epub ahead of print. PMID: 38897602. 11: Lu N, Zhang H, Wang Y, Wang X, Gao Q, Du Y, Lei H, Chen J. Enzyme-linked immunoassay for simultaneous detection of methyl parathion and sibutramine in apple cider vinegar. Anal Methods. 2024 Jun 27;16(25):4060-4065. doi: 10.1039/d4ay00879k. PMID: 38873980. 12: Fu Y, Yu J, Fan F, Wang B, Cao Z. Elucidating the Enzymatic Mechanism of Dihydrocoumarin Degradation: Insight into the Functional Evolution of Methyl- Parathion Hydrolase from QM/MM and MM MD Simulations. J Phys Chem B. 2024 Jun 13;128(23):5567-5575. doi: 10.1021/acs.jpcb.4c00970. Epub 2024 May 30. PMID: 38814729. 13: Safarnejad A, Abbasi-Moayed S, Fahimi-Kashani N, Hormozi-Nezhad MR, Abdollahi H. Modeling and optimization of the ratio of fluorophores: a step towards enhancing the sensitivity of ratiometric probes. Mikrochim Acta. 2024 May 13;191(6):327. doi: 10.1007/s00604-024-06403-3. PMID: 38740592. 14: Karuppusamy N, Jeyaraman A, Chen TW, Chen SM, Packiaraj DDF, Al-Mohaimeed AM, Al-Onazi WA, Elshikh MS, Yu J. Synergistic Manganese Cobalt Phosphide core- shell for the Electrochemical Detection of Methyl Parathion in Food Sample. Food Chem. 2024 Aug 30;450:139152. doi: 10.1016/j.foodchem.2024.139152. Epub 2024 Apr 4. PMID: 38653046. 15: Oluwoyo T, Kocadal K, Saygi S, Battal D. Determination of pesticide residue content in fruits and vegetables from Lagos, Nigeria. Environ Anal Health Toxicol. 2024 Mar;39(1):e2024002-0. doi: 10.5620/eaht.2024002. Epub 2024 Feb 7. PMID: 38631394; PMCID: PMC11079411. 16: Yang Y, Chen S, Zhang C, Li Y, Zong X, Lv Y, Zhang M. Subtle adjustment of the cyclic potential on electro-activated glassy carbon electrodes for sensitive sensing of methyl parathion. Anal Methods. 2024 Apr 25;16(16):2522-2532. doi: 10.1039/d4ay00079j. PMID: 38587853. 17: Zheng W, Li M, Zhang Z, Lou Z, Liu Y, Yao Y, Chen L, Lin B, Wang Y, Guo L. On-site preparation of sandwich plasmonic coupled SERS tape toward pesticide residue determination on food surface. Mikrochim Acta. 2024 Apr 1;191(4):224. doi: 10.1007/s00604-024-06301-8. PMID: 38556528. 18: do Rego EL, de Souza JR, Nakamura TC, Portela JF, Diniz PHGD, da Silva JDS. Pesticides in surface water of the Ondas river watershed, western Bahia, Brazil: Spatial-seasonal distribution and risk assessment. Chemosphere. 2024 Apr;354:141659. doi: 10.1016/j.chemosphere.2024.141659. Epub 2024 Mar 13. PMID: 38490616. 19: Zareasghari O, Javadi A, Afshar Mogaddam MR. Deep eutectic solvent-based pressurized liquid extraction combined with dispersive liquid-liquid microextraction of organophosphorus pesticide residues in egg powder prior to high-performance liquid chromatography analysis. J Sep Sci. 2024 Mar;47(5):e2300070. doi: 10.1002/jssc.202300070. PMID: 38466171. 20: Yang N, Pu H, Sun DW. Developing a magnetic SERS nanosensor utilizing aminated Fe-Based MOF for ultrasensitive trace detection of organophosphorus pesticides in apple juice. Food Chem. 2024 Jul 15;446:138846. doi: 10.1016/j.foodchem.2024.138846. Epub 2024 Feb 24. PMID: 38460279.