1: Miller AH, Martins IBS, Blagova EV, Wilson KS, Duhme-Klair AK. Kinetic and structural analysis of redox-reversible artificial imine reductases. J Inorg Biochem. 2024 Nov;260:112691. doi: 10.1016/j.jinorgbio.2024.112691. Epub 2024 Aug 6. PMID: 39126757.
2: Karadkhelkar NM, Gupta P, Barasa L, Chilamakuri R, Hlordzi CK, Acharekar N, Agarwal S, Chen ZS, Yoganathan S. Chemical Derivatization Leads to the Discovery Of Novel Analogs of Azotochelin, a Natural Siderophore, as Promising Anticancer Agents. ChemMedChem. 2024 Jul 2;19(13):e202300715. doi: 10.1002/cmdc.202300715. Epub 2024 May 14. PMID: 38598189.
3: Blagova EV, Miller AH, Bennett M, Booth RL, Dodson EJ, Duhme-Klair AK, Wilson KS. Thermostable homologues of the periplasmic siderophore-binding protein CeuE from Geobacillus stearothermophilus and Parageobacillus thermoglucosidasius. Acta Crystallogr D Struct Biol. 2023 Aug 1;79(Pt 8):694-705. doi: 10.1107/S2059798323004473. Epub 2023 Jul 10. PMID: 37428843; PMCID: PMC10394670.
4: Srivastava S, Dong H, Baars O, Sheng Y. Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii. Geobiology. 2023 Jul;21(4):507-519. doi: 10.1111/gbi.12552. Epub 2023 Feb 27. PMID: 36852450.
5: Southwell JW, Herman R, Raines DJ, Clarke JE, Böswald I, Dreher T, Gutenthaler SM, Schubert N, Seefeldt J, Metzler-Nolte N, Thomas GH, Wilson KS, Duhme-Klair AK. Siderophore-Linked Ruthenium Catalysts for Targeted Allyl Ester Prodrug Activation within Bacterial Cells. Chemistry. 2023 Feb 7;29(8):e202202536. doi: 10.1002/chem.202202536. Epub 2022 Dec 21. PMID: 36355416; PMCID: PMC10108276.
6: Baranska NG, Parkin A, Duhme-Klair AK. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Inorg Chem. 2022 Dec 5;61(48):19172-19182. doi: 10.1021/acs.inorgchem.2c02777. Epub 2022 Oct 17. PMID: 36251475; PMCID: PMC9727729.
7: Ferreira CMH, Sousa CA, Sanchis-Pérez I, López-Rayo S, Barros MT, Soares HMVM, Lucena JJ. Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max). Sci Total Environ. 2019 Jan 10;647:1586-1593. doi: 10.1016/j.scitotenv.2018.08.069. Epub 2018 Aug 6. PMID: 30180362.
8: Wilde EJ, Hughes A, Blagova EV, Moroz OV, Thomas RP, Turkenburg JP, Raines DJ, Duhme-Klair AK, Wilson KS. Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM4- siderophore analogues of varied linker length. Sci Rep. 2017 Apr 6;7:45941. doi: 10.1038/srep45941. PMID: 28383577; PMCID: PMC5382913.
9: Deicke M, Bellenger JP, Wichard T. Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A. 2013 Jul 12;1298:50-60. doi: 10.1016/j.chroma.2013.05.008. Epub 2013 May 10. PMID: 23726243.
10: Shi D, Xu Y, Hopkinson BM, Morel FM. Effect of ocean acidification on iron availability to marine phytoplankton. Science. 2010 Feb 5;327(5966):676-9. doi: 10.1126/science.1183517. Epub 2010 Jan 14. PMID: 20075213.
11: Bellenger JP, Wichard T, Kraepiel AM. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl Environ Microbiol. 2008 Mar;74(5):1478-84. doi: 10.1128/AEM.02236-07. Epub 2008 Jan 11. PMID: 18192412; PMCID: PMC2258613.
12: Bellenger JP, Arnaud-Neu F, Asfari Z, Myneni SC, Stiefel EI, Kraepiel AM. Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. J Biol Inorg Chem. 2007 Mar;12(3):367-76. doi: 10.1007/s00775-006-0194-6. Epub 2006 Dec 14. PMID: 17171370.
13: Page WJ, Kwon E, Cornish AS, Tindale AE. The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett. 2003 Nov 21;228(2):211-6. doi: 10.1016/S0378-1097(03)00753-5. PMID: 14638426.
14: Cornish AS, Page WJ. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl Environ Microbiol. 2000 Apr;66(4):1580-6. doi: 10.1128/AEM.66.4.1580-1586.2000. PMID: 10742245; PMCID: PMC92026.
15: Cornish AS, Page WJ. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology (Reading). 1998 Jul;144(7):1747-1754. doi: 10.1099/00221287-144-7-1747. PMID: 33757230.
16: Möllmann U, Ghosh A, Dolence EK, Dolence JA, Ghosh M, Miller MJ, Reissbrodt R. Selective growth promotion and growth inhibition of gram-negative and gram- positive bacteria by synthetic siderophore-beta-lactam conjugates. Biometals. 1998 Jan;11(1):1-12. doi: 10.1023/a:1009266705308. PMID: 9450313.
17: Huyer M, Page WJ. Zn Increases Siderophore Production in Azotobacter vinelandii. Appl Environ Microbiol. 1988 Nov;54(11):2625-31. doi: 10.1128/aem.54.11.2625-2631.1988. PMID: 16347766; PMCID: PMC204346.
18: Page WJ, Patrick J. The DNA gyrase inhibitors, nalidixic acid and oxolinic acid, prevent iron-mediated repression of catechol siderophore synthesis in Azotobacter vinelandii. Biol Met. 1988;1(1):57-61. doi: 10.1007/BF01128018. PMID: 2856355.
19: Knosp O, von Tigerstrom M, Page WJ. Siderophore-mediated uptake of iron in Azotobacter vinelandii. J Bacteriol. 1984 Jul;159(1):341-7. doi: 10.1128/jb.159.1.341-347.1984. PMID: 6429124; PMCID: PMC215635.
20: Page WJ, Huyer M. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J Bacteriol. 1984 May;158(2):496-502. doi: 10.1128/jb.158.2.496-502.1984. PMID: 6233258; PMCID: PMC215455.