MedKoo Cat#: 597543 | Name: Azotochelin

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Azotochelin is a siderophore produced by Azotobacter vinelandii, functioning as an iron-chelating compound that facilitates iron acquisition under iron-limited conditions. Structurally, it consists of two catecholate groups, enabling high-affinity Fe(III) binding. Bioactivity studies indicate that azotochelin exhibits an Fe(III) binding constant (log β) in the range of ~30–32, comparable to other microbial siderophores like enterobactin but with lower overall stability. It promotes iron uptake in A. vinelandii and supports nitrogen fixation by maintaining iron homeostasis. Unlike some other siderophores, azotochelin does not exhibit strong antimicrobial activity but plays a crucial ecological role in microbial competition and symbiotic plant interactions.

Chemical Structure

Azotochelin
Azotochelin
CAS#23369-85-9

Theoretical Analysis

MedKoo Cat#: 597543

Name: Azotochelin

CAS#: 23369-85-9

Chemical Formula: C20H22N2O8

Exact Mass: 418.1376

Molecular Weight: 418.40

Elemental Analysis: C, 57.41; H, 5.30; N, 6.70; O, 30.59

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Azotochelin; ISD-I 207; ISD-I-207; ISD-I207; ISDI 207; ISDI-207; ISDI207;
IUPAC/Chemical Name
N2,N6-bis(2,3-dihydroxybenzoyl)-L-lysine
InChi Key
KQPFLOCEYZIIRD-ZDUSSCGKSA-N
InChi Code
InChI=1S/C20H22N2O8/c23-14-8-3-5-11(16(14)25)18(27)21-10-2-1-7-13(20(29)30)22-19(28)12-6-4-9-15(24)17(12)26/h3-6,8-9,13,23-26H,1-2,7,10H2,(H,21,27)(H,22,28)(H,29,30)/t13-/m0/s1
SMILES Code
O=C(O)[C@H](CCCCNC(C1=CC=CC(O)=C1O)=O)NC(C2=CC=CC(O)=C2O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 418.40 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Miller AH, Martins IBS, Blagova EV, Wilson KS, Duhme-Klair AK. Kinetic and structural analysis of redox-reversible artificial imine reductases. J Inorg Biochem. 2024 Nov;260:112691. doi: 10.1016/j.jinorgbio.2024.112691. Epub 2024 Aug 6. PMID: 39126757. 2: Karadkhelkar NM, Gupta P, Barasa L, Chilamakuri R, Hlordzi CK, Acharekar N, Agarwal S, Chen ZS, Yoganathan S. Chemical Derivatization Leads to the Discovery Of Novel Analogs of Azotochelin, a Natural Siderophore, as Promising Anticancer Agents. ChemMedChem. 2024 Jul 2;19(13):e202300715. doi: 10.1002/cmdc.202300715. Epub 2024 May 14. PMID: 38598189. 3: Blagova EV, Miller AH, Bennett M, Booth RL, Dodson EJ, Duhme-Klair AK, Wilson KS. Thermostable homologues of the periplasmic siderophore-binding protein CeuE from Geobacillus stearothermophilus and Parageobacillus thermoglucosidasius. Acta Crystallogr D Struct Biol. 2023 Aug 1;79(Pt 8):694-705. doi: 10.1107/S2059798323004473. Epub 2023 Jul 10. PMID: 37428843; PMCID: PMC10394670. 4: Srivastava S, Dong H, Baars O, Sheng Y. Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii. Geobiology. 2023 Jul;21(4):507-519. doi: 10.1111/gbi.12552. Epub 2023 Feb 27. PMID: 36852450. 5: Southwell JW, Herman R, Raines DJ, Clarke JE, Böswald I, Dreher T, Gutenthaler SM, Schubert N, Seefeldt J, Metzler-Nolte N, Thomas GH, Wilson KS, Duhme-Klair AK. Siderophore-Linked Ruthenium Catalysts for Targeted Allyl Ester Prodrug Activation within Bacterial Cells. Chemistry. 2023 Feb 7;29(8):e202202536. doi: 10.1002/chem.202202536. Epub 2022 Dec 21. PMID: 36355416; PMCID: PMC10108276. 6: Baranska NG, Parkin A, Duhme-Klair AK. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Inorg Chem. 2022 Dec 5;61(48):19172-19182. doi: 10.1021/acs.inorgchem.2c02777. Epub 2022 Oct 17. PMID: 36251475; PMCID: PMC9727729. 7: Ferreira CMH, Sousa CA, Sanchis-Pérez I, López-Rayo S, Barros MT, Soares HMVM, Lucena JJ. Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max). Sci Total Environ. 2019 Jan 10;647:1586-1593. doi: 10.1016/j.scitotenv.2018.08.069. Epub 2018 Aug 6. PMID: 30180362. 8: Wilde EJ, Hughes A, Blagova EV, Moroz OV, Thomas RP, Turkenburg JP, Raines DJ, Duhme-Klair AK, Wilson KS. Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM4- siderophore analogues of varied linker length. Sci Rep. 2017 Apr 6;7:45941. doi: 10.1038/srep45941. PMID: 28383577; PMCID: PMC5382913. 9: Deicke M, Bellenger JP, Wichard T. Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A. 2013 Jul 12;1298:50-60. doi: 10.1016/j.chroma.2013.05.008. Epub 2013 May 10. PMID: 23726243. 10: Shi D, Xu Y, Hopkinson BM, Morel FM. Effect of ocean acidification on iron availability to marine phytoplankton. Science. 2010 Feb 5;327(5966):676-9. doi: 10.1126/science.1183517. Epub 2010 Jan 14. PMID: 20075213. 11: Bellenger JP, Wichard T, Kraepiel AM. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl Environ Microbiol. 2008 Mar;74(5):1478-84. doi: 10.1128/AEM.02236-07. Epub 2008 Jan 11. PMID: 18192412; PMCID: PMC2258613. 12: Bellenger JP, Arnaud-Neu F, Asfari Z, Myneni SC, Stiefel EI, Kraepiel AM. Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. J Biol Inorg Chem. 2007 Mar;12(3):367-76. doi: 10.1007/s00775-006-0194-6. Epub 2006 Dec 14. PMID: 17171370. 13: Page WJ, Kwon E, Cornish AS, Tindale AE. The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. FEMS Microbiol Lett. 2003 Nov 21;228(2):211-6. doi: 10.1016/S0378-1097(03)00753-5. PMID: 14638426. 14: Cornish AS, Page WJ. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl Environ Microbiol. 2000 Apr;66(4):1580-6. doi: 10.1128/AEM.66.4.1580-1586.2000. PMID: 10742245; PMCID: PMC92026. 15: Cornish AS, Page WJ. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology (Reading). 1998 Jul;144(7):1747-1754. doi: 10.1099/00221287-144-7-1747. PMID: 33757230. 16: Möllmann U, Ghosh A, Dolence EK, Dolence JA, Ghosh M, Miller MJ, Reissbrodt R. Selective growth promotion and growth inhibition of gram-negative and gram- positive bacteria by synthetic siderophore-beta-lactam conjugates. Biometals. 1998 Jan;11(1):1-12. doi: 10.1023/a:1009266705308. PMID: 9450313. 17: Huyer M, Page WJ. Zn Increases Siderophore Production in Azotobacter vinelandii. Appl Environ Microbiol. 1988 Nov;54(11):2625-31. doi: 10.1128/aem.54.11.2625-2631.1988. PMID: 16347766; PMCID: PMC204346. 18: Page WJ, Patrick J. The DNA gyrase inhibitors, nalidixic acid and oxolinic acid, prevent iron-mediated repression of catechol siderophore synthesis in Azotobacter vinelandii. Biol Met. 1988;1(1):57-61. doi: 10.1007/BF01128018. PMID: 2856355. 19: Knosp O, von Tigerstrom M, Page WJ. Siderophore-mediated uptake of iron in Azotobacter vinelandii. J Bacteriol. 1984 Jul;159(1):341-7. doi: 10.1128/jb.159.1.341-347.1984. PMID: 6429124; PMCID: PMC215635. 20: Page WJ, Huyer M. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J Bacteriol. 1984 May;158(2):496-502. doi: 10.1128/jb.158.2.496-502.1984. PMID: 6233258; PMCID: PMC215455.