MedKoo Cat#: 591880 | Name: Piperonyl butoxide
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Piperonyl butoxide (PBO) is an organic compound used as a component of pesticide formulations. It is a waxy white solid. It is a synergist. That is, despite having no pesticidal activity of its own, it enhances the potency of certain pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone.[1] It is a semisynthetic derivative of safrole.

Chemical Structure

Piperonyl butoxide
Piperonyl butoxide
CAS#51-03-6

Theoretical Analysis

MedKoo Cat#: 591880

Name: Piperonyl butoxide

CAS#: 51-03-6

Chemical Formula: C19H30O5

Exact Mass: 338.2093

Molecular Weight: 338.44

Elemental Analysis: C, 67.43; H, 8.94; O, 23.64

Price and Availability

Size Price Availability Quantity
100mg USD 560.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Piperonyl butoxide; NSC 8401; NSC-8401; NSC8401
IUPAC/Chemical Name
1,3-Benzodioxole, 5-((2-(2-butoxyethoxy)ethoxy)methyl)-6-propyl-
InChi Key
FIPWRIJSWJWJAI-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H30O5/c1-3-5-7-20-8-9-21-10-11-22-14-17-13-19-18(23-15-24-19)12-16(17)6-4-2/h12-13H,3-11,14-15H2,1-2H3
SMILES Code
CCCC1=C(COCCOCCOCCCC)C=C2OCOC2=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Piperonyl butoxide is a semisynthetic derivative of safrole, used as a component of pesticide formulations.
In vitro activity:
The results showed that piperonyl butoxide addition significantly decreased the biomass, chlorophyll content, and total carotenoid content but hugely increased the lipid accumulation. With the treatment of 150 ppm piperonyl butoxide combined with 8000 Lux light intensity, the final lipid accumulation and single-cell lipid content were further increased by 21.79 and 76.42% compared to those of the control, respectively. The lipid accumulation in D. tertiolecta is probably related to the increased expression of DtMFPα in D. tertiolecta under the action of piperonyl butoxide. Reference: J Agric Food Chem. 2022 Sep 28;70(38):12074-12084. https://pubmed.ncbi.nlm.nih.gov/36122177/
In vivo activity:
This study evaluated the effects of PBO (piperonyl butoxide) on various sperm functions during capacitation and clarified the mechanisms of reproductive toxic effects on male mouse fertility at different concentrations of PBO (0.1, 1, 10, and 100 μM). This study found that PBO significantly decreased sperm motility, kinematics, and acrosome-reacted and capacitated spermatozoa. In addition, PBO suppressed the intracellular ATP levels and directly affected cell viability. Moreover, PBO detrimentally decreased the activation of PKA and altered the levels of tyrosine-phosphorylated proteins. Reference: Reprod Toxicol. 2021 Mar;100:120-125. https://pubmed.ncbi.nlm.nih.gov/33515694/
Solvent mg/mL mM comments
Solubility
Ethanol 100.0 295.47
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 338.44 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Dai JL, Song DX, Chen HH, Liang MH, Jiang JG. Effects of Piperonyl Butoxide on the Accumulation of Lipid and the Transcript Levels of DtMFPα in Dunaliella tertiolecta. J Agric Food Chem. 2022 Sep 28;70(38):12074-12084. doi: 10.1021/acs.jafc.2c03006. Epub 2022 Sep 19. PMID: 36122177. 2. Hara S, Morita R, Ogawa T, Segawa R, Takimoto N, Suzuki K, Hamadate N, Hayashi SM, Odachi A, Ogiwara I, Shibusawa S, Yoshida T, Shibutani M. Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. Exp Toxicol Pathol. 2014 Aug;66(5-6):225-34. doi: 10.1016/j.etp.2014.02.002. Epub 2014 Mar 26. PMID: 24680176. 3. Bae JW, Kwon WS. Piperonyl butoxide, a synergist of pesticides can elicit male-mediated reproductive toxicity. Reprod Toxicol. 2021 Mar;100:120-125. doi: 10.1016/j.reprotox.2021.01.010. Epub 2021 Jan 27. PMID: 33515694. 4. Lake BG, Price RJ, Scott MP, Chatham LR, Vardy A, Osimitz TG. Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance. Toxicology. 2020 Jun;439:152465. doi: 10.1016/j.tox.2020.152465. Epub 2020 Apr 19. PMID: 32320717.
In vitro protocol:
1. Dai JL, Song DX, Chen HH, Liang MH, Jiang JG. Effects of Piperonyl Butoxide on the Accumulation of Lipid and the Transcript Levels of DtMFPα in Dunaliella tertiolecta. J Agric Food Chem. 2022 Sep 28;70(38):12074-12084. doi: 10.1021/acs.jafc.2c03006. Epub 2022 Sep 19. PMID: 36122177. 2. Hara S, Morita R, Ogawa T, Segawa R, Takimoto N, Suzuki K, Hamadate N, Hayashi SM, Odachi A, Ogiwara I, Shibusawa S, Yoshida T, Shibutani M. Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. Exp Toxicol Pathol. 2014 Aug;66(5-6):225-34. doi: 10.1016/j.etp.2014.02.002. Epub 2014 Mar 26. PMID: 24680176.
In vivo protocol:
1. Bae JW, Kwon WS. Piperonyl butoxide, a synergist of pesticides can elicit male-mediated reproductive toxicity. Reprod Toxicol. 2021 Mar;100:120-125. doi: 10.1016/j.reprotox.2021.01.010. Epub 2021 Jan 27. PMID: 33515694. 2. Lake BG, Price RJ, Scott MP, Chatham LR, Vardy A, Osimitz TG. Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance. Toxicology. 2020 Jun;439:152465. doi: 10.1016/j.tox.2020.152465. Epub 2020 Apr 19. PMID: 32320717.
1: Sakka MK, Jagadeesan R, Baliota GV, Nayak MK, Vontas J, Athanassiou CG. High concentrations of piperonyl butoxide (PBO) enhance toxicity of S-methoprene against the lesser grain borer, Rhyzopertha dominica. Environ Sci Pollut Res Int. 2024 Aug 7. doi: 10.1007/s11356-024-34442-z. Epub ahead of print. PMID: 39110286. 2: Jiang M, Wang X, Hu W, Wang Z, Guan H, Zhao N, Liao M, Cao H. A novel mutation Trp-2027-Gly in acetyl-CoA carboxylase confers resistance to cyhalofop- butyl in Chinese sprangletop (Leptochloa chinensis). Pest Manag Sci. 2024 Aug 6. doi: 10.1002/ps.8353. Epub ahead of print. PMID: 39105535. 3: Park D, Han SB, Shin HC, Choi YS, Kim YR, Kim JY, Jang GH, Eom M. Validation of analytical methods for newly regulated veterinary drug residues in livestock and fishery products with maximum residue limits in Republic of Korea. Food Chem. 2024 Jul 31;460(Pt 3):140705. doi: 10.1016/j.foodchem.2024.140705. Epub ahead of print. PMID: 39098221. 4: Limboo N, Saha D. Assessment of sublethal effects of permethrin on adult life characteristics and resistance dynamics in Aedes albopictus (Diptera: Culicidae). Pestic Biochem Physiol. 2024 Aug;203:106020. doi: 10.1016/j.pestbp.2024.106020. Epub 2024 Jul 5. PMID: 39084808. 5: Qu C, Yao J, Huang J, Che W, Fang Y, Luo C, Wang R. Tetraniliprole resistance in field-collected populations of Tuta absoluta (Lepidoptera: Gelechiidae) from China: Baseline susceptibility, cross-resistance, inheritance, and biochemical mechanism. Pestic Biochem Physiol. 2024 Aug;203:106019. doi: 10.1016/j.pestbp.2024.106019. Epub 2024 Jul 5. PMID: 39084779. 6: Ba Konko Ciré EH, Roh ME, Diallo A, Gadiaga T, Seck A, Thiam S, Gaye S, Diallo I, Lo AC, Diouf E, Ba OG, Gueye AB, Fogelson A, Wu X, Milligan P, Kibuka T, Hama M, Eckert E, Thwing J, Bennett A, Gosling R, Hwang J, Sene D, Ba F, Cissé B, Sturm-Ramirez K, Hsiang MS, Ndiaye JL. Mass drug administration to reduce malaria incidence in a low-to-moderate endemic setting: short-term impact results from a cluster randomised controlled trial in Senegal. medRxiv [Preprint]. 2024 Jul 18:2024.07.17.24310593. doi: 10.1101/2024.07.17.24310593. PMID: 39072042; PMCID: PMC11275686. 7: Kavallieratos NG, Boukouvala MC, Eleftheriadou N, Xefteri DN, Gidari DLS, Kyrpislidi VPC. Τhe sublethal impacts of five insecticidal formulations on Oryzaephilus surinamensis behavioral traits. Pest Manag Sci. 2024 Jul 25. doi: 10.1002/ps.8262. Epub ahead of print. PMID: 39051420. 8: Zhai Z, Meng M, Zhang Z, Kim J, Zhu Y. Metabolism of a fungicide propiconazole by Cunninghamella elegans ATCC36112. Arch Microbiol. 2024 Jul 18;206(8):356. doi: 10.1007/s00203-024-04062-9. PMID: 39026110. 9: Aioub AAA, Moustafa MAM, Hashem AS, Sayed S, Hamada HM, Zhang Q, Abdel-Wahab SIZ. Biochemical and genetic mechanisms in Pieris rapae (Lepidoptera: Pieridae) resistance under emamectin benzoate stress. Chemosphere. 2024 Aug;362:142887. doi: 10.1016/j.chemosphere.2024.142887. Epub 2024 Jul 24. PMID: 39025308. 10: Sovegnon PM, Akoton R, Stopard IJ, Churcher TS, McCall PJ, Ranson H, Foster GM, Djogbénou LS. Efficacy of Interceptor G2, Royal Guard and PermaNet 3.0 against pyrethroid-resistant Anopheles gambiae s.l. from Za-Kpota, southern Benin: an experimental hut trial. Parasit Vectors. 2024 Jul 11;17(1):300. doi: 10.1186/s13071-024-06372-9. PMID: 38992693; PMCID: PMC11238393. 11: Abubakar M, Shad SA. Realized heritability, inheritance, and mechanism of chlorfenapyr resistance in biocontrol agent, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): A step towards sustainable pest management. Chemosphere. 2024 Aug;362:142726. doi: 10.1016/j.chemosphere.2024.142726. Epub 2024 Jun 29. PMID: 38950750. 12: Lukole EA, Cook J, Mosha JF, Mallya E, Aziz T, Kulkarni MA, Matowo NS, Martin J, Rowland M, Kleinschmidt I, Manjurano A, Mosha FW, Protopopoff N. Will a lack of fabric durability be their downfall? Impact of textile durability on the efficacy of three types of dual-active-ingredient long-lasting insecticidal nets: a secondary analysis on malaria prevalence and incidence from a cluster- randomized trial in north-west Tanzania. Malar J. 2024 Jun 28;23(1):199. doi: 10.1186/s12936-024-05020-y. PMID: 38943155; PMCID: PMC11212245. 13: Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Hancock PA, Knight E, Dorsey G, Opigo J, Yeka A, Katureebe A, Kyohere M, Hemingway J, Kamya MR, McDermott D, Lucas ER, Donnelly MJ. LLIN Evaluation in Uganda Project (LLINEUP)-effects of a vector control trial on Plasmodium infection prevalence and genotypic markers of insecticide resistance in Anopheles vectors from 48 districts of Uganda. Sci Rep. 2024 Jun 24;14(1):14488. doi: 10.1038/s41598-024-65050-z. PMID: 38914669; PMCID: PMC11196729. 14: Raharinjatovo J, Dabiré RK, Esch K, Soma DD, Hien A, Camara T, Diouf MB, Belemvire A, Gerberg L, Awolola TS, Koné A, Jacob D, Vandecandelaere S, Baes M, Poyer S. Physical and insecticidal durability of Interceptor®, Interceptor® G2, and PermaNet® 3.0 insecticide-treated nets in Burkina Faso: results of durability monitoring in three sites from 2019 to 2022. Malar J. 2024 Jun 4;23(1):173. doi: 10.1186/s12936-024-04989-w. PMID: 38835017; PMCID: PMC11149234. 15: Kamgang B, Acântara J, Tedjou A, Keumeni C, Yougang A, Ancia A, Bigirimana F, Clarke SE, Gil VS, Wondji C. Entomological surveys and insecticide susceptibility profile of Aedes aegypti during the dengue outbreak in Sao Tome and Principe in 2022. PLoS Negl Trop Dis. 2024 Jun 3;18(6):e0011903. doi: 10.1371/journal.pntd.0011903. PMID: 38829904; PMCID: PMC11175431. 16: Strang CG, Rondeau S, Baert N, McArt SH, Raine NE, Muth F. Field agrochemical exposure impacts locomotor activity in wild bumblebees. Ecology. 2024 Jun;105(6):e4310. doi: 10.1002/ecy.4310. PMID: 38828716. 17: Löscher W, Gramer M, Römermann K. Heterogeneous brain distribution of bumetanide following systemic administration in rats. Biopharm Drug Dispos. 2024 Jun;45(3):138-148. doi: 10.1002/bdd.2390. Epub 2024 Jun 1. PMID: 38823029. 18: Oruni A, Lynd A, Njoroge H, Onyige I, Van't Hof AE, Matovu E, Donnelly MJ. Pyrethroid resistance and gene expression profile of a new resistant An. gambiae colony from Uganda reveals multiple resistance mechanisms and overexpression of Glutathione-S-Transferases linked to survival of PBO- pyrethroid combination. Wellcome Open Res. 2024 Apr 29;9:13. doi: 10.12688/wellcomeopenres.19404.2. PMID: 38813466; PMCID: PMC11134160. 19: Marcombe S, Doeurk B, Thammavong P, Veseli T, Heafield C, Mills MA, Kako S, Prado MF, Thomson S, Millett S, Hill T, Kentsley I, Davies S, Pathiraja G, Daniels B, Browne L, Nyamukanga M, Harvey J, Rubinstein L, Townsend C, Allen Z, Davey-Spence C, Hupi A, Jones AK, Boyer S. Metabolic Resistance and Not Voltage- Gated Sodium Channel Gene Mutation Is Associated with Pyrethroid Resistance of Aedes albopictus (Skuse, 1894) from Cambodia. Insects. 2024 May 15;15(5):358. doi: 10.3390/insects15050358. PMID: 38786914; PMCID: PMC11122440. 20: Lugenge AG, Odufuwa OG, Mseti JJ, Swai JK, Skovmand O, Moore SJ. Complete series method (CSM): a convenient method to reduce daily heterogeneity when evaluating the regeneration time (RT) of insecticide-treated nets (ITNs). Parasit Vectors. 2024 May 22;17(1):235. doi: 10.1186/s13071-024-06323-4. PMID: 38778423; PMCID: PMC11110420.