MedKoo Cat#: 558238 | Name: Phosmet
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Phosmet is an organothiophosphorus insecticide that has been used to control pig mange.

Chemical Structure

Phosmet
Phosmet
CAS#732-11-6

Theoretical Analysis

MedKoo Cat#: 558238

Name: Phosmet

CAS#: 732-11-6

Chemical Formula: C11H12NO4PS2

Exact Mass: 316.9945

Molecular Weight: 317.31

Elemental Analysis: C, 41.64; H, 3.81; N, 4.41; O, 20.17; P, 9.76; S, 20.21

Price and Availability

Size Price Availability Quantity
100mg USD 450.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Phosmet; Imidan; Imidan 5 Dust; Imidan WP; Imidathion;
IUPAC/Chemical Name
O,O-Dimethyl phthalimidomethyl phosphorodithioate
InChi Key
LMNZTLDVJIUSHT-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H12NO4PS2/c1-15-17(18,16-2)19-7-12-10(13)8-5-3-4-6-9(8)11(12)14/h3-6H,7H2,1-2H3
SMILES Code
S=P(OC)(SCN1C(C2=CC=CC=C2C1=O)=O)OC
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Phosmet is an organothiophosphorus insecticide that has been used to control pig mange.
In vitro activity:
In the current study, the interaction of BHb with phosmet was revealed using various spectroscopic techniques. Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) studies of BHb in the presence of phosmet showed secondary structural changes in the protein post binding, Fluorescence study shows the involvement of the dynamic quenching predominantly, Van't Hoffs thermodynamic study showed negative enthalpy value and free energy change and negative entropy change that revealed the involvement of hydrogen bonding and van der Waal forces predominantly further revealing spontaneous nature of binding interaction. Reference: Spectrochim Acta A Mol Biomol Spectrosc. 2023 Aug 5;296:122630. https://pubmed.ncbi.nlm.nih.gov/37001261/
In vivo activity:
Data regarding its sublethal effects on fish are limited, and therefore, with this study it was aimed to investigate the effects of phosmet on liver and brain tissues of juvenile Oncorhynchus mykiss following 24, 48, 72 and 96 h of exposure to 5, 25 and 50 μg/l concentrations. Anticholinesterase activity of phosmet was observed in brain tissue reaching maximum of 46%. In both tissues, increase in the activities of superoxide dismutase, catalase and glutathione peroxidase and level of glutathione was accompanied by elevated thiobarbituric acid reactive substances level. Results clearly indicate the modulatory effect of phosmet on acetylcholinesterase activity and its potency to provoke oxidative stress condition. Reference: Toxicol Res (Camb). 2021 Aug 21;10(5):983-991. https://pubmed.ncbi.nlm.nih.gov/34733483/

Preparing Stock Solutions

The following data is based on the product molecular weight 317.31 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Kaur L, Singh A, Datta A, Ojha H. Multispectroscopic studies of binding interaction of phosmet with bovine hemoglobin. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Aug 5;296:122630. doi: 10.1016/j.saa.2023.122630. Epub 2023 Mar 24. PMID: 37001261. 2. Guiñazú N, Rena V, Genti-Raimondi S, Rivero V, Magnarelli G. Effects of the organophosphate insecticides phosmet and chlorpyrifos on trophoblast JEG-3 cell death, proliferation and inflammatory molecule production. Toxicol In Vitro. 2012 Apr;26(3):406-13. doi: 10.1016/j.tiv.2012.01.003. Epub 2012 Jan 12. PMID: 22265773. 3. Muhammed F, Dogan D. Toxicity and biochemical responses induced by phosmet in rainbow trout (Oncorhynchus mykiss). Toxicol Res (Camb). 2021 Aug 21;10(5):983-991. doi: 10.1093/toxres/tfab084. PMID: 34733483; PMCID: PMC8557651.
In vitro protocol:
1. Kaur L, Singh A, Datta A, Ojha H. Multispectroscopic studies of binding interaction of phosmet with bovine hemoglobin. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Aug 5;296:122630. doi: 10.1016/j.saa.2023.122630. Epub 2023 Mar 24. PMID: 37001261. 2. Guiñazú N, Rena V, Genti-Raimondi S, Rivero V, Magnarelli G. Effects of the organophosphate insecticides phosmet and chlorpyrifos on trophoblast JEG-3 cell death, proliferation and inflammatory molecule production. Toxicol In Vitro. 2012 Apr;26(3):406-13. doi: 10.1016/j.tiv.2012.01.003. Epub 2012 Jan 12. PMID: 22265773.
In vivo protocol:
1. Muhammed F, Dogan D. Toxicity and biochemical responses induced by phosmet in rainbow trout (Oncorhynchus mykiss). Toxicol Res (Camb). 2021 Aug 21;10(5):983-991. doi: 10.1093/toxres/tfab084. PMID: 34733483; PMCID: PMC8557651.
1: Fatimah N, Ashraf S, Nayana R U K, Anju PB, Showkat M, Perveen K, Bukhari NA, Sayyed RZ, Mastinu A. Evaluation of suitability and biodegradability of the organophosphate insecticides to mitigate insecticide pollution in onion farming. Heliyon. 2024 Jun 13;10(12):e32580. doi: 10.1016/j.heliyon.2024.e32580. PMID: 39005928; PMCID: PMC11239468. 2: Zhong Y, Li Z, Zhang A, Peng Y, Zhou H, Wang B, Xie L, Guo Y. A molecularly imprinted electrochemical sensor MIP/Cu-MOF/rGO/AuNPs/GCE for highly sensitive detection of electroneutral organophosphorus pesticide residues. Mikrochim Acta. 2024 May 23;191(6):338. doi: 10.1007/s00604-024-06420-2. PMID: 38780645. 3: Sha P, Zhu C, Wang T, Dong P, Wu X. Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis. Nanomaterials (Basel). 2024 Apr 19;14(8):717. doi: 10.3390/nano14080717. PMID: 38668211; PMCID: PMC11053652. 4: Hajikhani M, Hegde A, Snyder J, Cheng J, Lin M. Integrating transformer-based machine learning with SERS technology for the analysis of hazardous pesticides in spinach. J Hazard Mater. 2024 May 15;470:134208. doi: 10.1016/j.jhazmat.2024.134208. Epub 2024 Apr 3. PMID: 38593663. 5: Dias SDC, de Brida AL, Jean-Baptiste MC, Leite LG, Ovruski SM, Lee JC, Garcia FRM. Compatibility of Entomopathogenic Nematodes with Chemical Insecticides for the Control of Drosophila suzukii (Diptera: Drosophilidae). Plants (Basel). 2024 Feb 25;13(5):632. doi: 10.3390/plants13050632. PMID: 38475479; PMCID: PMC10934839. 6: Ataş M, Bereketoglu C. The toxicity assessment of phosmet on development, reproduction, and gene expression in Daphnia magna. PeerJ. 2024 Feb 28;12:e17034. doi: 10.7717/peerj.17034. PMID: 38436013; PMCID: PMC10908259. 7: Graham KK, McArt S, Isaacs R. High pesticide exposure and risk to bees in pollinator plantings adjacent to conventionally managed blueberry fields. Sci Total Environ. 2024 Apr 20;922:171248. doi: 10.1016/j.scitotenv.2024.171248. Epub 2024 Feb 24. PMID: 38402956. 8: Zhai K, Sun L, Nguyen THD, Lin M. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS. J Food Sci. 2024 Apr;89(4):2512-2521. doi: 10.1111/1750-3841.16986. Epub 2024 Feb 21. PMID: 38380711. 9: Aziza N, Khaydarov K, Zamira D, Ochilov U, Dilshod M. Exploring microscopic pollen morphology in herbaceous Flora: Insights and analysis using scanning electron microscopy. Microsc Res Tech. 2024 Jun;87(6):1201-1209. doi: 10.1002/jemt.24508. Epub 2024 Feb 1. PMID: 38299712. 10: Ye T, Wang Z, Liu G, Teng J, Xu C, Liu L, He C, Chen J. Contaminant characterization of odor in soil of typical pesticide-contaminated site with shallow groundwater. Environ Sci Pollut Res Int. 2023 Dec;30(57):121182-121195. doi: 10.1007/s11356-023-30639-w. Epub 2023 Nov 11. PMID: 37952068. 11: Geana EI, Baracu AM, Stoian MC, Brincoveanu O, Pachiu C, Dinu LA. Hybrid nanomaterial-based indirect electrochemical sensing of glyphosate in surface water: a promising approach for environmental monitoring. Environ Sci Process Impacts. 2023 Dec 13;25(12):2057-2066. doi: 10.1039/d3em00355h. PMID: 37870161. 12: Ma Y, Wang S, Guo J, Wang Z, Tang H, Wang K. Sensitive fluorescent detection of phosmet and chlortetracycline in animal-derived food samples based on a water-stable Cd(II) chain-based zwitterionic metal-organic framework. Anal Chim Acta. 2023 Nov 1;1280:341850. doi: 10.1016/j.aca.2023.341850. Epub 2023 Sep 28. PMID: 37858547. 13: K Al Rawas H, Al Mawla R, Pham TYN, Truong DH, Nguyen TLA, Taamalli S, Ribaucour M, El Bakali A, Černušák I, Dao DQ, Louis F. New insight into environmental oxidation of phosmet insecticide initiated by HO˙ radicals in gas and water - a theoretical study. Environ Sci Process Impacts. 2023 Dec 13;25(12):2042-2056. doi: 10.1039/d3em00325f. PMID: 37850503. 14: Yang Z, Yang K, Li Z, Hu Y, Jiang J, Tang X, Zeng J, Wang M, Yang X. Using three-dimensional modelling of the anterior sclera to investigate the scleral profile in myopic eyes. Ophthalmic Physiol Opt. 2024 Jan;44(1):219-228. doi: 10.1111/opo.13235. Epub 2023 Oct 9. PMID: 37811684. 15: Jiang C, Zhong H, Zou J, Zhu G, Huang Y. CuCeTA nanoflowers as an efficient peroxidase candidate for direct colorimetric detection of glyphosate. J Mater Chem B. 2023 Oct 18;11(40):9630-9638. doi: 10.1039/d3tb01455j. PMID: 37750214. 16: Siddiqi N, Vasireddi S, Sattayaprasert P, Thamman R, Narang A, Aneja A. Determination of sources of error and improvement in accuracy of left ventricular mass measurement by echocardiography. Int J Cardiovasc Imaging. 2022 Oct;38(10):2129-2137. doi: 10.1007/s10554-022-02627-7. Epub 2022 May 23. PMID: 37726463. 17: Majid Z, Zhang Q, Yang Z, Che H, Cheng N. A Multi-Enzyme Cascade Response for the Colorimetric Recognition of Organophosphorus Pesticides Utilizing Core- Shell Pd@Pt Nanoparticles with High Peroxidase-like Activity. Foods. 2023 Sep 4;12(17):3319. doi: 10.3390/foods12173319. PMID: 37685251; PMCID: PMC10486685. 18: Oymen B, Jalilzadeh M, Yılmaz F, Aşır S, Türkmen D, Denizli A. Simple and Fast Pesticide Nanosensors: Example of Surface Plasmon Resonance Coumaphos Nanosensor. Micromachines (Basel). 2023 Mar 23;14(4):707. doi: 10.3390/mi14040707. PMID: 37420940; PMCID: PMC10143765. 19: Song D, Lei L, Tian T, Yang X, Wang L, Li Y, Huang H. A novel strategy for identification of pesticides in different categories by concentration- independent model based on a nanozyme with multienzyme-like activities. Biosens Bioelectron. 2023 Oct 1;237:115458. doi: 10.1016/j.bios.2023.115458. Epub 2023 Jun 8. PMID: 37311405. 20: Du X, Gao Z, Yang T, Qu Y, He L. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Nov 15;301:122954. doi: 10.1016/j.saa.2023.122954. Epub 2023 Jun 1. PMID: 37270975.